The scaling entropy of a generic action
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 5-14

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the scaling entropy of a generic action is asymptotically incomparable with a given increasing sublinear sequence.
@article{ZNSL_2021_507_a0,
     author = {G. A. Veprev},
     title = {The scaling entropy of a generic action},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {507},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a0/}
}
TY  - JOUR
AU  - G. A. Veprev
TI  - The scaling entropy of a generic action
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 5
EP  - 14
VL  - 507
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a0/
LA  - ru
ID  - ZNSL_2021_507_a0
ER  - 
%0 Journal Article
%A G. A. Veprev
%T The scaling entropy of a generic action
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 5-14
%V 507
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a0/
%G ru
%F ZNSL_2021_507_a0
G. A. Veprev. The scaling entropy of a generic action. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 5-14. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a0/