Long-time evolution described by the unitary group of the Mehler operator
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 98-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this work the long-time asymptotics of the solution to the Cauchy problem is described by means of the evolution unitary group of the self-adjoint Mehler operator. Spectral analysis of the latter operator is also discussed.
@article{ZNSL_2021_506_a9,
     author = {M. A. Lyalinov},
     title = {Long-time evolution described by the unitary group of the {Mehler} operator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {98--112},
     year = {2021},
     volume = {506},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a9/}
}
TY  - JOUR
AU  - M. A. Lyalinov
TI  - Long-time evolution described by the unitary group of the Mehler operator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 98
EP  - 112
VL  - 506
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a9/
LA  - ru
ID  - ZNSL_2021_506_a9
ER  - 
%0 Journal Article
%A M. A. Lyalinov
%T Long-time evolution described by the unitary group of the Mehler operator
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 98-112
%V 506
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a9/
%G ru
%F ZNSL_2021_506_a9
M. A. Lyalinov. Long-time evolution described by the unitary group of the Mehler operator. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 98-112. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a9/

[1] M. A. Lyalinov, “Functional difference equations and eigenfunctions of a Schrödinger operator with $\delta^\prime-$interaction on a circular conical surface”, Proc. Royal Soc. A, 476 (2020), 20200179 | DOI | Zbl

[2] M. A. Lyalinov, “Eigenoscillations in an angular domain and spectral properties of functional equations”, Eur. J. Appl. Math., 2021 (electr. version before publ.)

[3] M. A. Lyalinov, N. Y. Zhu, Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions, Mario Boella Series on Electromagnetism in Information Communication, SciTech-IET, Edison, NJ, 2012

[4] M. Sh. Birman, M. Z. Solomjak, Spectral Theory of selfadjoint Operators in Hilbert Spaces, Holland, Dordrecht, 1987

[5] M. V. Fedoryuk, Asimptotika: Integraly i Ryady, Nauka, M., 1987

[6] I. S. Gradstein, I. M. Ryzhik, Tables of Integrals, Series and Products, 4th ed., Academic Press, Orlando, 1980

[7] I. H. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York, 1972 | Zbl

[8] J. S. Howland, “Spectral theory of operators of Hankel type. I, II”, Indiana Univ. Math., 41:2 (1992), 409–434 | DOI | MR

[9] N. N. Lebedev, “Teorema Parsevalya dlya preobrazovaniya Melera–Foka”, Doklady AN SSSR, LXVIII:3 (1949), 445–48

[10] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford Press, 1937

[11] N. Bleistien, “Uniform asymptotic expansions of integrals with stationary point near algebraic singularity”, Comm. Pure appl. Maths., 4 (1966), 353–370 | DOI

[12] D. R. Yafaev, “Spectral and scattering theory for perturbations of the Carleman operator”, Algebra Analiz, 25:2 (2013), 251–278 | MR