@article{ZNSL_2021_506_a5,
author = {E. A. Zlobina},
title = {Diffraction of short waves by a contour with {H\"older} singularity of curvature. {Transition} zone},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {43--56},
year = {2021},
volume = {506},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a5/}
}
E. A. Zlobina. Diffraction of short waves by a contour with Hölder singularity of curvature. Transition zone. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 43-56. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a5/
[1] E. A. Zlobina, A. P. Kiselev, “Boundary-layer approach to high-frequency diffraction by a jump of curvature”, Wave Motion, 96 (2020), 102571 | DOI | MR | Zbl
[2] E. A. Zlobina, A. P. Kiselev, “Difraktsiya korotkikh voln na konture s gelderovskoi singulyarnostyu krivizny”, Algebra i Analiz, 33:2 (2021), 35–55
[3] E. A. Zlobina, “Korotkovolnovaya difraktsiya na konture s negladkoi kriviznoi. Pogransloinyi podkhod”, Zap. nauchn. semin. POMI, 493, 2020, 169–185 | MR
[4] E. A. Zlobina, A. P. Kiselev, “Perekhodnaya zona v vysokochastotnoi zadache difraktsii na impedansnoi granitse so skachkom krivizny. Metod Kirkhgofa i metod pogranichnogo sloya”, Radiotekhnika i Elektronika, 67:2 (2022) (to appear)
[5] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, v. 1, GIFML, M., 1959
[6] V. A. Borovikov, B. E. Kinber, Geometricheskaya teoriya difraktsii, Svyaz, M., 1978
[7] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972
[8] A. Erdeii, Asimptoticheskie razlozheniya, GIFML, M., 1962
[9] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979