Diffraction of short waves by a contour with Hölder singularity of curvature. Transition zone
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 43-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the short-wave diffraction of a cylindrical wave by a contour whose curvature has a Hölder type discontinuity at a point. The incidence is non-tangent at the point of singularity. In the framework of the Kirchhoff method, we find an asymptotic description for the outgoing wavefield inside the transition zone at both small and moderate distances. Analysis of ray formulas allows us to characterize applicability areas of expressions obtained.
@article{ZNSL_2021_506_a5,
     author = {E. A. Zlobina},
     title = {Diffraction of short waves by a contour with {H\"older} singularity of curvature. {Transition} zone},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {43--56},
     year = {2021},
     volume = {506},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a5/}
}
TY  - JOUR
AU  - E. A. Zlobina
TI  - Diffraction of short waves by a contour with Hölder singularity of curvature. Transition zone
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 43
EP  - 56
VL  - 506
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a5/
LA  - ru
ID  - ZNSL_2021_506_a5
ER  - 
%0 Journal Article
%A E. A. Zlobina
%T Diffraction of short waves by a contour with Hölder singularity of curvature. Transition zone
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 43-56
%V 506
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a5/
%G ru
%F ZNSL_2021_506_a5
E. A. Zlobina. Diffraction of short waves by a contour with Hölder singularity of curvature. Transition zone. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 43-56. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a5/

[1] E. A. Zlobina, A. P. Kiselev, “Boundary-layer approach to high-frequency diffraction by a jump of curvature”, Wave Motion, 96 (2020), 102571 | DOI | MR | Zbl

[2] E. A. Zlobina, A. P. Kiselev, “Difraktsiya korotkikh voln na konture s gelderovskoi singulyarnostyu krivizny”, Algebra i Analiz, 33:2 (2021), 35–55

[3] E. A. Zlobina, “Korotkovolnovaya difraktsiya na konture s negladkoi kriviznoi. Pogransloinyi podkhod”, Zap. nauchn. semin. POMI, 493, 2020, 169–185 | MR

[4] E. A. Zlobina, A. P. Kiselev, “Perekhodnaya zona v vysokochastotnoi zadache difraktsii na impedansnoi granitse so skachkom krivizny. Metod Kirkhgofa i metod pogranichnogo sloya”, Radiotekhnika i Elektronika, 67:2 (2022) (to appear)

[5] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, v. 1, GIFML, M., 1959

[6] V. A. Borovikov, B. E. Kinber, Geometricheskaya teoriya difraktsii, Svyaz, M., 1978

[7] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972

[8] A. Erdeii, Asimptoticheskie razlozheniya, GIFML, M., 1962

[9] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979