Toeplitz matrices in the BC-method for the plane domains
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 21-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

BC-method is an approach to inverse problems based on their relationship with boundary control theory and system theory. The main fragment of its numerical implementation is the inversion of the matrix of the so-called connecting operator. In multidimensional problems, the matrix is ill-conditioned and has a large size, which leads to a rapid growth in the number of operations needed for inverting. The paper reveals the block-Toeplitz structure of this matrix, using which it is possible to significantly reduce the amount of computations.
@article{ZNSL_2021_506_a3,
     author = {M. I. Belishev and N. A. Karazeeva},
     title = {Toeplitz matrices in the {BC-method} for the plane domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {21--35},
     year = {2021},
     volume = {506},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a3/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - N. A. Karazeeva
TI  - Toeplitz matrices in the BC-method for the plane domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 21
EP  - 35
VL  - 506
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a3/
LA  - ru
ID  - ZNSL_2021_506_a3
ER  - 
%0 Journal Article
%A M. I. Belishev
%A N. A. Karazeeva
%T Toeplitz matrices in the BC-method for the plane domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 21-35
%V 506
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a3/
%G ru
%F ZNSL_2021_506_a3
M. I. Belishev; N. A. Karazeeva. Toeplitz matrices in the BC-method for the plane domains. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 21-35. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a3/

[1] M. I. Belishev, “Uravneniya Gelfanda-Levitana v mnogomernykh obratnykh zadachakh dlya volnovykh uravnenii”, Zap. nauchn. semin. LOMI, 165, 1990, 15–20 | Zbl

[2] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl

[3] M. I. Belishev, “How to see waves under the Earth surface (the BC-method for geophysicists)”, Ill-Posed and Inverse Problems, eds. S. I. Kabanikhin, V. G. Romanov, VSP, 2002, 55–72

[4] M. I. Belishev, “Dynamical Inverse Problem for the Equation $u_{tt}-\Delta u - \nabla \rho ~\cdot~ \nabla u=0$ (the BC-Method)”, CUBO A Math. J., 10:2 (2008), 17–33 | MR

[5] M. I. Belishev, “Boundary Control Method”, Encyclopedia of Applied and Computational Mathematics, v. 1, 142–146

[6] M. I. Belishev, “Metod granichnogo upravleniya i tomografiya Rimanovykh mnogoobrazii (BC-metod)”, Uspekhi mat. nauk, 72:4 (2017), 3–66 | MR | Zbl

[7] M. I. Belishev, A. S. Blagoveschenskii, N. A. Karazeeva, “Prosteishii test dlya trekhmernoi dinamicheskoi obratnoi zadachi (BC-metod)”, Zap. nauchn. semin. POMI, 483, 2019, 19–40

[8] M. I. Belishev, I. A. Blagoveshchenskii, N. A. Karazeeva, “Toeplitz matrices in the Boundary Control method”, EuroAsian J. Math. computer appl., 9, Issue:3 (2021), 4–15

[9] M. I. Belishev, V. Yu. Gotlib, “Dynamical variant of the BC-method: theory and numerical testing”, J. Inverse and Ill-Posed Problems, 7:3 (1999), 221–240 | DOI | MR | Zbl

[10] M. I. Belishev, V. Yu. Gotlib, S. A. Ivanov, “The BC-method in multidimensional spectral inverse problem: theory and numerical illustrations”, Control, Optimization and Calculus of Variations, v. 2, October, 1997, 307–327 | DOI | Zbl

[11] M. I. Belishev, I. B. Ivanov, I. V. Kubyshkin, V. S. Semenov, “Numerical testing in determination of sound speed from a part of boundary by the BC-method”, J. Inverse and Ill-Posed Problems, 24:2 (2016), 159–180 | DOI | MR | Zbl

[12] M. I. Belishev, N. A. Karazeeva, “Prosteishii test dlya dvumernoi dinamicheskoi obratnoi zadachi (BC-metod)”, Zap. nauchn. semin. POMI, 471, 2018, 38–58

[13] M. I. Belishev, N. A. Karazeeva, Toeplitz matrices in the Boundary Control method, 8 Jul 2021, arXiv: 2107.03811v1 [math.NA]

[14] M. I. Belishev, V. S. Mikhailov, “Unified approach to classical equations of inverse problem theory”, J. Inverse and Ill-Posed Problems, 20:4 (2012), 461–488 | DOI | MR | Zbl

[15] I. B. Ivanov, M. I. Belishev, V. S. Semenov, The reconstruction of sound speed in the Marmousi model by the boundary control method, 24 Sept 2016, arXiv: 1609.07586v1 [physics.geo-ph]

[16] G. Heinig, K. Rost, “Fast algorithms for Toeplitz and Hankel matrices”, Linear Algebra and its Appl., 435 (2011), 1–59 | DOI | MR | Zbl

[17] M. V.De Hoop, P. Kepley, L. Oksanen, “Recovery of a smooth metric via wave field and coordinate transformation reconstruction”, SIAM J. Appl. Math., 78:4 (2018), 1931–1953 | DOI | MR | Zbl

[18] S. I. Kabanikhin, N. S. Novikov, I. V. Oseledets, M. A. Shishlenin, “Fast Toeplitz linear system inversion for solving two-dimensional acoustic inverse problems”, J. inverse and ill-posed problems, 23:6 (2015), 687–700 | DOI | MR | Zbl

[19] L. Oksanen, “Solving an inverse obstacle problem for the wave equation by using the boundary control method”, Inverse Problems, 29:3 (2013), 035004 | DOI | MR | Zbl

[20] L. Pestov, V. Bolgova, O. Kazarina, “Numerical recovering of a density by the BC-method”, Inverse Problems and Imaging, 4:4 (2010), 703–712 | DOI | MR | Zbl

[21] A. A. Timonov, “Novye metody chislennykh reshenii gibridnoi obratnoi zadachi vizualizatsii elektricheskoi provodimosti”, Zap. nauchn. semin. POMI, 499, 2020, 105–128

[22] V. V. Voevodin, E. E. Tyrtyshnikov, Vychislitelnye protsessy s Teplitsevymi matritsami, Nauka, M., 1987

[23] T. Yang, Y. Yang, A Non-Iterative Reconstruction Algorithm for the Acoustic Inverse Boundary Value Problem, 1 Sep 2020, arXiv: 2009.00641v1 [math.AP]