@article{ZNSL_2021_506_a3,
author = {M. I. Belishev and N. A. Karazeeva},
title = {Toeplitz matrices in the {BC-method} for the plane domains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {21--35},
year = {2021},
volume = {506},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a3/}
}
M. I. Belishev; N. A. Karazeeva. Toeplitz matrices in the BC-method for the plane domains. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 21-35. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a3/
[1] M. I. Belishev, “Uravneniya Gelfanda-Levitana v mnogomernykh obratnykh zadachakh dlya volnovykh uravnenii”, Zap. nauchn. semin. LOMI, 165, 1990, 15–20 | Zbl
[2] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl
[3] M. I. Belishev, “How to see waves under the Earth surface (the BC-method for geophysicists)”, Ill-Posed and Inverse Problems, eds. S. I. Kabanikhin, V. G. Romanov, VSP, 2002, 55–72
[4] M. I. Belishev, “Dynamical Inverse Problem for the Equation $u_{tt}-\Delta u - \nabla \rho ~\cdot~ \nabla u=0$ (the BC-Method)”, CUBO A Math. J., 10:2 (2008), 17–33 | MR
[5] M. I. Belishev, “Boundary Control Method”, Encyclopedia of Applied and Computational Mathematics, v. 1, 142–146
[6] M. I. Belishev, “Metod granichnogo upravleniya i tomografiya Rimanovykh mnogoobrazii (BC-metod)”, Uspekhi mat. nauk, 72:4 (2017), 3–66 | MR | Zbl
[7] M. I. Belishev, A. S. Blagoveschenskii, N. A. Karazeeva, “Prosteishii test dlya trekhmernoi dinamicheskoi obratnoi zadachi (BC-metod)”, Zap. nauchn. semin. POMI, 483, 2019, 19–40
[8] M. I. Belishev, I. A. Blagoveshchenskii, N. A. Karazeeva, “Toeplitz matrices in the Boundary Control method”, EuroAsian J. Math. computer appl., 9, Issue:3 (2021), 4–15
[9] M. I. Belishev, V. Yu. Gotlib, “Dynamical variant of the BC-method: theory and numerical testing”, J. Inverse and Ill-Posed Problems, 7:3 (1999), 221–240 | DOI | MR | Zbl
[10] M. I. Belishev, V. Yu. Gotlib, S. A. Ivanov, “The BC-method in multidimensional spectral inverse problem: theory and numerical illustrations”, Control, Optimization and Calculus of Variations, v. 2, October, 1997, 307–327 | DOI | Zbl
[11] M. I. Belishev, I. B. Ivanov, I. V. Kubyshkin, V. S. Semenov, “Numerical testing in determination of sound speed from a part of boundary by the BC-method”, J. Inverse and Ill-Posed Problems, 24:2 (2016), 159–180 | DOI | MR | Zbl
[12] M. I. Belishev, N. A. Karazeeva, “Prosteishii test dlya dvumernoi dinamicheskoi obratnoi zadachi (BC-metod)”, Zap. nauchn. semin. POMI, 471, 2018, 38–58
[13] M. I. Belishev, N. A. Karazeeva, Toeplitz matrices in the Boundary Control method, 8 Jul 2021, arXiv: 2107.03811v1 [math.NA]
[14] M. I. Belishev, V. S. Mikhailov, “Unified approach to classical equations of inverse problem theory”, J. Inverse and Ill-Posed Problems, 20:4 (2012), 461–488 | DOI | MR | Zbl
[15] I. B. Ivanov, M. I. Belishev, V. S. Semenov, The reconstruction of sound speed in the Marmousi model by the boundary control method, 24 Sept 2016, arXiv: 1609.07586v1 [physics.geo-ph]
[16] G. Heinig, K. Rost, “Fast algorithms for Toeplitz and Hankel matrices”, Linear Algebra and its Appl., 435 (2011), 1–59 | DOI | MR | Zbl
[17] M. V.De Hoop, P. Kepley, L. Oksanen, “Recovery of a smooth metric via wave field and coordinate transformation reconstruction”, SIAM J. Appl. Math., 78:4 (2018), 1931–1953 | DOI | MR | Zbl
[18] S. I. Kabanikhin, N. S. Novikov, I. V. Oseledets, M. A. Shishlenin, “Fast Toeplitz linear system inversion for solving two-dimensional acoustic inverse problems”, J. inverse and ill-posed problems, 23:6 (2015), 687–700 | DOI | MR | Zbl
[19] L. Oksanen, “Solving an inverse obstacle problem for the wave equation by using the boundary control method”, Inverse Problems, 29:3 (2013), 035004 | DOI | MR | Zbl
[20] L. Pestov, V. Bolgova, O. Kazarina, “Numerical recovering of a density by the BC-method”, Inverse Problems and Imaging, 4:4 (2010), 703–712 | DOI | MR | Zbl
[21] A. A. Timonov, “Novye metody chislennykh reshenii gibridnoi obratnoi zadachi vizualizatsii elektricheskoi provodimosti”, Zap. nauchn. semin. POMI, 499, 2020, 105–128
[22] V. V. Voevodin, E. E. Tyrtyshnikov, Vychislitelnye protsessy s Teplitsevymi matritsami, Nauka, M., 1987
[23] T. Yang, Y. Yang, A Non-Iterative Reconstruction Algorithm for the Acoustic Inverse Boundary Value Problem, 1 Sep 2020, arXiv: 2009.00641v1 [math.AP]