On a self-similar behavior of logarithmic sums
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 279-292 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The logarithmic sums $S_N (\omega, \zeta) = \sum \limits_{n = 0}^{N-1} \ln \left(1 + e^{-2 \pi i (\omega n + \frac \omega{2} + \zeta)} \right)$, where $\omega$ and $\zeta$ are parameters, are related to trigonometric products from the theory of quasiperiodic operators, as well as to a special function kindred to the Malyuzhinets function from the diffraction theory, hyperbolic Ruijsenaars $G$-function arising in connection with the theory integrable systems, and the Faddeev quantum dilogarithm, which plays an important role in the knot theory, Teichmüller quantum theory and complex Chern-Simons theory. Assuming that $\omega \in (0,1)$ and $\zeta \in\mathbb C _-$, and using renormalization formulas similar to the ones well known in the theory of the Gauss exponential sums, we describe the behavior of the logarithmic sums for large $N$.
@article{ZNSL_2021_506_a17,
     author = {A. A. Fedotov and I. I. Lukashova},
     title = {On a self-similar behavior of logarithmic sums},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {279--292},
     year = {2021},
     volume = {506},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a17/}
}
TY  - JOUR
AU  - A. A. Fedotov
AU  - I. I. Lukashova
TI  - On a self-similar behavior of logarithmic sums
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 279
EP  - 292
VL  - 506
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a17/
LA  - ru
ID  - ZNSL_2021_506_a17
ER  - 
%0 Journal Article
%A A. A. Fedotov
%A I. I. Lukashova
%T On a self-similar behavior of logarithmic sums
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 279-292
%V 506
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a17/
%G ru
%F ZNSL_2021_506_a17
A. A. Fedotov; I. I. Lukashova. On a self-similar behavior of logarithmic sums. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 279-292. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a17/

[1] G. D. Maliuzhinets, “Excitation, reflection and emission of surface waves from a wedge with given face impedances”, Soviet Phys.: Doklady, 3 (1958), 752–755

[2] V. Babich, M. Lyalinov, V. Grikurov, Diffraction theory$:$ the Sommerfeld–Malyuzhinets technique, Alpha Science, Oxford, 2008

[3] S. Ruijsenaars, “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38 (1997), 1069–1146 | DOI | MR | Zbl

[4] S. Garoufalidis, R. Kashaev, Resurgence of Faddeev's quantum dilogarithm, 2008, arXiv: 2008.12465

[5] V. Buslaev, A. Fedotov, “On the difference equations with periodic coefficients”, Adv. Theor. Math. Phys., 5 (2001), 1105–1168 | DOI | MR | Zbl

[6] A. Fedotov, F. Klopp, “An exact renormalization formula for Gaussian exponential sums and its applications”, Amer. J. Math., 134:3 (2012), 711–748 | DOI | MR | Zbl

[7] A. Avila, S. Jitomirskaya, “The ten Matriny problem”, Ann. Math., 170 (2009), 303–342 | DOI | MR | Zbl

[8] A. A. Fedotov, “Matritsa monodromii dlya uravneniya pochti-Mate s maloi konstantoi svyazi”, Funkts. analiz i ego pril., 52:4 (2018), 89–93 | MR | Zbl

[9] S. Jitomirskaya, F. Yang, “Pure point spectrum for the Maryland model: a constructive proof”, Ergodic Theory Dynam. Systems, 2020 (to appear)

[10] A. Ya. Khinchin, Tsepnye drobi, Fizmatlit, M., 1960

[11] A. A. Fedotov, “Kvaziklascicheskie asimtotiki funktsii Malyuzhintsa”, Zap. nauchn. semin. POMI, 451, 2016, 178–187