@article{ZNSL_2021_506_a17,
author = {A. A. Fedotov and I. I. Lukashova},
title = {On a self-similar behavior of logarithmic sums},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {279--292},
year = {2021},
volume = {506},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a17/}
}
A. A. Fedotov; I. I. Lukashova. On a self-similar behavior of logarithmic sums. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 279-292. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a17/
[1] G. D. Maliuzhinets, “Excitation, reflection and emission of surface waves from a wedge with given face impedances”, Soviet Phys.: Doklady, 3 (1958), 752–755
[2] V. Babich, M. Lyalinov, V. Grikurov, Diffraction theory$:$ the Sommerfeld–Malyuzhinets technique, Alpha Science, Oxford, 2008
[3] S. Ruijsenaars, “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38 (1997), 1069–1146 | DOI | MR | Zbl
[4] S. Garoufalidis, R. Kashaev, Resurgence of Faddeev's quantum dilogarithm, 2008, arXiv: 2008.12465
[5] V. Buslaev, A. Fedotov, “On the difference equations with periodic coefficients”, Adv. Theor. Math. Phys., 5 (2001), 1105–1168 | DOI | MR | Zbl
[6] A. Fedotov, F. Klopp, “An exact renormalization formula for Gaussian exponential sums and its applications”, Amer. J. Math., 134:3 (2012), 711–748 | DOI | MR | Zbl
[7] A. Avila, S. Jitomirskaya, “The ten Matriny problem”, Ann. Math., 170 (2009), 303–342 | DOI | MR | Zbl
[8] A. A. Fedotov, “Matritsa monodromii dlya uravneniya pochti-Mate s maloi konstantoi svyazi”, Funkts. analiz i ego pril., 52:4 (2018), 89–93 | MR | Zbl
[9] S. Jitomirskaya, F. Yang, “Pure point spectrum for the Maryland model: a constructive proof”, Ergodic Theory Dynam. Systems, 2020 (to appear)
[10] A. Ya. Khinchin, Tsepnye drobi, Fizmatlit, M., 1960
[11] A. A. Fedotov, “Kvaziklascicheskie asimtotiki funktsii Malyuzhintsa”, Zap. nauchn. semin. POMI, 451, 2016, 178–187