The Cauchy problem for the Korteweg–de Vries equation in the class of periodic infinite-gap functions
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 258-278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, the method of the inverse spectral problem is applied to finding a solution to the Cauchy problem for the Korteweg-de Vries equation in the class of periodic infinite-gap functions. A simple derivation of the system of differential Dubrovin equations is proposed. The solvability of the Cauchy problem is proved for the infinite system of Dubrovin differential equations in the class of four-times continuously differentiable periodic infinite-gap functions. It is shown that the sum of a uniformly convergent functional series constructed using the solution of the infinite system of Dubrovin equations and the formula for the first trace, does satisfy the nonlinear Korteweg–de Vries equation. In addition, it is proved that if the number $\frac{\pi }{n}$ is the period of the initial function, then the number $\frac{\pi }{n}$ is the period for the solution of the Cauchy problem with respect to the variable $x$. Here $n\ge 2$ is a positive integer.
@article{ZNSL_2021_506_a16,
     author = {A. B. Hasanov and T. G. Hasanov},
     title = {The {Cauchy} problem for the {Korteweg{\textendash}de} {Vries} equation in the class of periodic infinite-gap functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {258--278},
     year = {2021},
     volume = {506},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a16/}
}
TY  - JOUR
AU  - A. B. Hasanov
AU  - T. G. Hasanov
TI  - The Cauchy problem for the Korteweg–de Vries equation in the class of periodic infinite-gap functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 258
EP  - 278
VL  - 506
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a16/
LA  - ru
ID  - ZNSL_2021_506_a16
ER  - 
%0 Journal Article
%A A. B. Hasanov
%A T. G. Hasanov
%T The Cauchy problem for the Korteweg–de Vries equation in the class of periodic infinite-gap functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 258-278
%V 506
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a16/
%G ru
%F ZNSL_2021_506_a16
A. B. Hasanov; T. G. Hasanov. The Cauchy problem for the Korteweg–de Vries equation in the class of periodic infinite-gap functions. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 258-278. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a16/

[1] C. Gardner, I. Green, M. Kruskal, R. Miura, “A method for solving the Korteveg-de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1098 | DOI

[2] L. D. Faddeev, “Svoistva $S$-matritsy odnomernogo uravneniya Shredingera”, Tr. MI AN SSSR, 73, 1964, 314–336 | Zbl

[3] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, “Naukova dumka”, Kiev, 1977

[4] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984

[5] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure and Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl

[6] A. R. Its, V. B. Matveev, “Operatory Shredingera s konechnozonnym spektrom i N-solitonnye resheniya uravneniya Kortevega-de Friza”, TMF, 23:1 (1975), 51–68 | MR

[7] B. A. Dubrovin, S. P. Novikov, “Periodicheskii i uslovno periodicheskii analogi mnogosolitonnykh reshenii uravneniya Kortevega-de Friza”, ZhETF, 67:12 (1974), 2131–2143

[8] Yu. A. Mitropolskii, N. N. Bogolyubov (ml.), A. K. Prikarpatskii, V. G. Samoilenko, Integriruemye dinamicheskie sistemy: spektralnye i differentsialno-geometricheskie aspekty, “Naukova dumka”, Kiev, 1987

[9] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980

[10] V. B. Matveev, “30 years of finite-gap integration theory”, Phil.Trans. R., Soc. A, 366 (2008), 837–875 | DOI | Zbl

[11] E. L. Ince, Ordinary differential equations, Dover, New York, 1956

[12] B. A. Dubrovin, “Periodicheskaya zadacha dlya uravneniya Kortevega-de Friza v klasse konechnozonnykh potentsialov”, Funkts. analiz i ego pril., 9:3 (1975), 41–51 | MR | Zbl

[13] P. G. Grinevich, I. A. Taimanov, “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Geometry, Topology and Mathematical Physics, Amer. Math. Soc. Transl. 2, 224, eds. V. M. Buchstaber, I. M. Krichever | MR | Zbl

[14] A. B. Khasanov, A. B. Yakhshimuratov, “Ob uravneniya Kortevega–de Friza s samosoglasovannym istochnikom v klasse periodicheskikh funktsii”, TMF, 164:2 (2010), 214–221 | Zbl

[15] A. O. Smirnov, “Ellipticheskie resheniya nelineinogo uravneniya Shredingera i modifitsirovannogo uravneniya Kortevega–de Friza”, Matem. sb., 185:8 (1994), 103–114 | Zbl

[16] P. Lax, “Almost periodic solutions of the KdF equation”, SCAM Revue, 18:3 (1976), 351–575

[17] A. V. Domrin, “Meromorfnoe prodolzhenie reshenii solitonnykh uravnenii”, Izv. RAN. Ser. matem., 74:3 (2010), 23–44 | MR | Zbl

[18] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, v. I, II, IL, M., 1961

[19] I. V. Stankevich, “Ob odnoi zadache spektralnogo analiza dlya uravneniya Khilla”, DAN SSSR, 192:1 (1970), 34–37 | Zbl

[20] N. I. Akhiezer, “Kontinualnyi analog ortogonalnykh mnogochlenov na sisteme intervalov”, DAN SSSR, 141:2 (1961), 262–266

[21] E. Trubowtz, “The inverse problem for periodic potentials”, Comm. Pure. Appl. Math., 30 (1977), 321–337 | DOI | MR

[22] H. Hochstadt, “On the determination of Hill's equation from its spectrum”, Arch. Rat. Mech. Anal., 19 (1965), 353–362 | DOI | Zbl

[23] H. P. Mckean, P. Moerbeke, “The spectrum of Hill's equation”, Invent. Math., 30:3 (1975), 217–274 | DOI | MR | Zbl

[24] H. Flachka, “On the inverse problem for Hill's operator”, Arch. Rational Mech. Anal., 59:4 (1975), 293–309 | DOI | MR

[25] H. Hochstadt, “Estimates on the stability interval's for the Hill's equation”, Proc. AMS, 14 (1963), 930–932 | MR | Zbl

[26] B. M. Levitan, G. Sh. Guseinov, “Vychislenie glavnogo chlena asimptotiki dliny lakuny periodicheskoi zadachi Shturma–Liuvillya”, Serdika B'lgarsko matematichesko spisanie, 3 (1977), 273–280 | Zbl

[27] H. Hochstadt, “A Generalization of Borg's inverse theorem for Hill's equations”, J. Math. Anal. and Appl., 102 (1984), 599–605 | DOI | MR | Zbl

[28] G. Borg, “Eine Umkehrung der Sturm-Liouvillschen Eigenwertaufgable”, Bestimmung der Differentialgleichung durch die Eigenwete Acta Math.-Berlin, 78, 1946, 1–96 | Zbl