@article{ZNSL_2021_506_a16,
author = {A. B. Hasanov and T. G. Hasanov},
title = {The {Cauchy} problem for the {Korteweg{\textendash}de} {Vries} equation in the class of periodic infinite-gap functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {258--278},
year = {2021},
volume = {506},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a16/}
}
TY - JOUR AU - A. B. Hasanov AU - T. G. Hasanov TI - The Cauchy problem for the Korteweg–de Vries equation in the class of periodic infinite-gap functions JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 258 EP - 278 VL - 506 UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a16/ LA - ru ID - ZNSL_2021_506_a16 ER -
%0 Journal Article %A A. B. Hasanov %A T. G. Hasanov %T The Cauchy problem for the Korteweg–de Vries equation in the class of periodic infinite-gap functions %J Zapiski Nauchnykh Seminarov POMI %D 2021 %P 258-278 %V 506 %U http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a16/ %G ru %F ZNSL_2021_506_a16
A. B. Hasanov; T. G. Hasanov. The Cauchy problem for the Korteweg–de Vries equation in the class of periodic infinite-gap functions. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 258-278. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a16/
[1] C. Gardner, I. Green, M. Kruskal, R. Miura, “A method for solving the Korteveg-de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1098 | DOI
[2] L. D. Faddeev, “Svoistva $S$-matritsy odnomernogo uravneniya Shredingera”, Tr. MI AN SSSR, 73, 1964, 314–336 | Zbl
[3] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, “Naukova dumka”, Kiev, 1977
[4] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984
[5] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure and Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl
[6] A. R. Its, V. B. Matveev, “Operatory Shredingera s konechnozonnym spektrom i N-solitonnye resheniya uravneniya Kortevega-de Friza”, TMF, 23:1 (1975), 51–68 | MR
[7] B. A. Dubrovin, S. P. Novikov, “Periodicheskii i uslovno periodicheskii analogi mnogosolitonnykh reshenii uravneniya Kortevega-de Friza”, ZhETF, 67:12 (1974), 2131–2143
[8] Yu. A. Mitropolskii, N. N. Bogolyubov (ml.), A. K. Prikarpatskii, V. G. Samoilenko, Integriruemye dinamicheskie sistemy: spektralnye i differentsialno-geometricheskie aspekty, “Naukova dumka”, Kiev, 1987
[9] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980
[10] V. B. Matveev, “30 years of finite-gap integration theory”, Phil.Trans. R., Soc. A, 366 (2008), 837–875 | DOI | Zbl
[11] E. L. Ince, Ordinary differential equations, Dover, New York, 1956
[12] B. A. Dubrovin, “Periodicheskaya zadacha dlya uravneniya Kortevega-de Friza v klasse konechnozonnykh potentsialov”, Funkts. analiz i ego pril., 9:3 (1975), 41–51 | MR | Zbl
[13] P. G. Grinevich, I. A. Taimanov, “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Geometry, Topology and Mathematical Physics, Amer. Math. Soc. Transl. 2, 224, eds. V. M. Buchstaber, I. M. Krichever | MR | Zbl
[14] A. B. Khasanov, A. B. Yakhshimuratov, “Ob uravneniya Kortevega–de Friza s samosoglasovannym istochnikom v klasse periodicheskikh funktsii”, TMF, 164:2 (2010), 214–221 | Zbl
[15] A. O. Smirnov, “Ellipticheskie resheniya nelineinogo uravneniya Shredingera i modifitsirovannogo uravneniya Kortevega–de Friza”, Matem. sb., 185:8 (1994), 103–114 | Zbl
[16] P. Lax, “Almost periodic solutions of the KdF equation”, SCAM Revue, 18:3 (1976), 351–575
[17] A. V. Domrin, “Meromorfnoe prodolzhenie reshenii solitonnykh uravnenii”, Izv. RAN. Ser. matem., 74:3 (2010), 23–44 | MR | Zbl
[18] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, v. I, II, IL, M., 1961
[19] I. V. Stankevich, “Ob odnoi zadache spektralnogo analiza dlya uravneniya Khilla”, DAN SSSR, 192:1 (1970), 34–37 | Zbl
[20] N. I. Akhiezer, “Kontinualnyi analog ortogonalnykh mnogochlenov na sisteme intervalov”, DAN SSSR, 141:2 (1961), 262–266
[21] E. Trubowtz, “The inverse problem for periodic potentials”, Comm. Pure. Appl. Math., 30 (1977), 321–337 | DOI | MR
[22] H. Hochstadt, “On the determination of Hill's equation from its spectrum”, Arch. Rat. Mech. Anal., 19 (1965), 353–362 | DOI | Zbl
[23] H. P. Mckean, P. Moerbeke, “The spectrum of Hill's equation”, Invent. Math., 30:3 (1975), 217–274 | DOI | MR | Zbl
[24] H. Flachka, “On the inverse problem for Hill's operator”, Arch. Rational Mech. Anal., 59:4 (1975), 293–309 | DOI | MR
[25] H. Hochstadt, “Estimates on the stability interval's for the Hill's equation”, Proc. AMS, 14 (1963), 930–932 | MR | Zbl
[26] B. M. Levitan, G. Sh. Guseinov, “Vychislenie glavnogo chlena asimptotiki dliny lakuny periodicheskoi zadachi Shturma–Liuvillya”, Serdika B'lgarsko matematichesko spisanie, 3 (1977), 273–280 | Zbl
[27] H. Hochstadt, “A Generalization of Borg's inverse theorem for Hill's equations”, J. Math. Anal. and Appl., 102 (1984), 599–605 | DOI | MR | Zbl
[28] G. Borg, “Eine Umkehrung der Sturm-Liouvillschen Eigenwertaufgable”, Bestimmung der Differentialgleichung durch die Eigenwete Acta Math.-Berlin, 78, 1946, 1–96 | Zbl