@article{ZNSL_2021_506_a15,
author = {V. V. Sukhanov},
title = {Asymptotic behavior of solutions to a nonstationary equation {Schr\"odinger} on a semi-axle with a potential which is slowly depends on time},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {245--257},
year = {2021},
volume = {506},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a15/}
}
TY - JOUR AU - V. V. Sukhanov TI - Asymptotic behavior of solutions to a nonstationary equation Schrödinger on a semi-axle with a potential which is slowly depends on time JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 245 EP - 257 VL - 506 UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a15/ LA - ru ID - ZNSL_2021_506_a15 ER -
%0 Journal Article %A V. V. Sukhanov %T Asymptotic behavior of solutions to a nonstationary equation Schrödinger on a semi-axle with a potential which is slowly depends on time %J Zapiski Nauchnykh Seminarov POMI %D 2021 %P 245-257 %V 506 %U http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a15/ %G ru %F ZNSL_2021_506_a15
V. V. Sukhanov. Asymptotic behavior of solutions to a nonstationary equation Schrödinger on a semi-axle with a potential which is slowly depends on time. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 245-257. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a15/
[1] J. D. Dollard, “Adiabatic switching in the Shroedinger theory of scattering”, J. Math. Phys., 7 (1966), 802–810 | DOI | MR
[2] G. Nenciu, “On the adiabatic limit for Dirac particles in external fields”, Com. Math. Phys., 76 (1980), 117–128 | DOI | Zbl
[3] A. Martinez, Sh. Nakamura, “Adiabatic limit and scattering”, C. R. Acad. Sci. Paris ser I Math., 318:12 (1994), 1153–1158 | MR | Zbl
[4] V. V. Sukhanov, “Asimptoticheskoe povedenie reshenii nestatsionarnogo uravneniya Diraka s medlenno zavisyaschim ot vremeni potentsialom”, Zap. nauchn. semin. POMI, 483, 2019, 189–198
[5] V. V. Sukhanov, “Asimptoticheskoe povedenie reshenii nestatsionarnogo uravneniya Shredingera s medlenno zavisyaschim ot vremeni potentsialom”, Zap. nauchn. semin. POMI, 493, 2020, 323–335
[6] V. A. Marchenko, Sturm-Liouville operators and their applications, “Naukova Dumka”, Kiev, 1977 (Russian) | Zbl