On monodromy matrices for a difference Schr\"odinger equation on the real line with a small periodic potential
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 223-244

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper one considers a one-dimensional difference Schrödinger equation $\psi(z+h) + \psi(z-h) + \lambda v(z) \psi(z) = E \psi(z) $ with a periodic potential $v$. In the case when the potential is real analytic, as well as in the case when, in a neighborhood of $\mathbb{R}$, the potential has a finite number of simple poles per period, for small values of the coupling constant $\lambda$, we describe the asymptotics of a monodromy matrix.
@article{ZNSL_2021_506_a14,
     author = {K. S. Sedov and A. A. Fedotov},
     title = {On monodromy matrices for a difference {Schr\"odinger} equation on the real line with a small periodic potential},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {223--244},
     publisher = {mathdoc},
     volume = {506},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a14/}
}
TY  - JOUR
AU  - K. S. Sedov
AU  - A. A. Fedotov
TI  - On monodromy matrices for a difference Schr\"odinger equation on the real line with a small periodic potential
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 223
EP  - 244
VL  - 506
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a14/
LA  - ru
ID  - ZNSL_2021_506_a14
ER  - 
%0 Journal Article
%A K. S. Sedov
%A A. A. Fedotov
%T On monodromy matrices for a difference Schr\"odinger equation on the real line with a small periodic potential
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 223-244
%V 506
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a14/
%G ru
%F ZNSL_2021_506_a14
K. S. Sedov; A. A. Fedotov. On monodromy matrices for a difference Schr\"odinger equation on the real line with a small periodic potential. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 223-244. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a14/