On monodromy matrices for a difference Schr\"odinger equation on the real line with a small periodic potential
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 223-244
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper one considers a one-dimensional difference Schrödinger equation $\psi(z+h) + \psi(z-h) + \lambda v(z) \psi(z) = E \psi(z) $ with a periodic potential $v$. In the case when the potential is real analytic, as well as in the case when, in a neighborhood of $\mathbb{R}$, the potential has a finite number of simple poles per period, for small values of the coupling constant $\lambda$, we describe the asymptotics of a monodromy matrix.
@article{ZNSL_2021_506_a14,
author = {K. S. Sedov and A. A. Fedotov},
title = {On monodromy matrices for a difference {Schr\"odinger} equation on the real line with a small periodic potential},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {223--244},
publisher = {mathdoc},
volume = {506},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a14/}
}
TY - JOUR AU - K. S. Sedov AU - A. A. Fedotov TI - On monodromy matrices for a difference Schr\"odinger equation on the real line with a small periodic potential JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 223 EP - 244 VL - 506 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a14/ LA - ru ID - ZNSL_2021_506_a14 ER -
%0 Journal Article %A K. S. Sedov %A A. A. Fedotov %T On monodromy matrices for a difference Schr\"odinger equation on the real line with a small periodic potential %J Zapiski Nauchnykh Seminarov POMI %D 2021 %P 223-244 %V 506 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a14/ %G ru %F ZNSL_2021_506_a14
K. S. Sedov; A. A. Fedotov. On monodromy matrices for a difference Schr\"odinger equation on the real line with a small periodic potential. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 223-244. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a14/