@article{ZNSL_2021_506_a14,
author = {K. S. Sedov and A. A. Fedotov},
title = {On monodromy matrices for a difference {Schr\"odinger} equation on the real line with a small periodic potential},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {223--244},
year = {2021},
volume = {506},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a14/}
}
TY - JOUR AU - K. S. Sedov AU - A. A. Fedotov TI - On monodromy matrices for a difference Schrödinger equation on the real line with a small periodic potential JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 223 EP - 244 VL - 506 UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a14/ LA - ru ID - ZNSL_2021_506_a14 ER -
%0 Journal Article %A K. S. Sedov %A A. A. Fedotov %T On monodromy matrices for a difference Schrödinger equation on the real line with a small periodic potential %J Zapiski Nauchnykh Seminarov POMI %D 2021 %P 223-244 %V 506 %U http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a14/ %G ru %F ZNSL_2021_506_a14
K. S. Sedov; A. A. Fedotov. On monodromy matrices for a difference Schrödinger equation on the real line with a small periodic potential. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 223-244. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a14/
[1] M. Wilkinson, “Critical properties of electron eigenstates in incommensurate systems”, Proc. Roy. Soc. London Ser. A, 391 (1984), 305–350 | MR
[2] J. P. Guillement, B. Helffer, P. Treton, “Walk inside Hofstadter's butterfly”, J. Phys. France, 50 (1989), 2019–2058 | DOI
[3] L. Pastur, A. Figotin, Spectra of Random and Almost-Periodic Operators, Springer-Verlag, Berlin, 1992 | Zbl
[4] H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon, Schrödinger Operators: with Applications to Quantum Mechanics and Global Geometry, Springer-Verlag, Berlin, 1987
[5] E. I. Dinaburg, Ya. G. Sinai, “Ob odnomernom uravnenii Shredingera s kvaziperiodicheskim potentsialom”, Funkts. analiz i ego prilozheniya, 9 (1975), 8–21
[6] J. Bellissard, R. Lima, D. Testard, “A metal-insulator transition for the almost Mathieu model”, Comm. Math. Phys., 88 (1983), 207–234 | DOI | MR | Zbl
[7] L. H. Eliasson, “Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation”, Comm. Math. Phys., 146 (1992), 447–482 | DOI | MR | Zbl
[8] A. Avila, S. Jitomirskaya, “Almost localization and almost reducibility”, J. Eur. Math. Soc., 12 (2010), 93–131 | DOI | Zbl
[9] D. Damanik, M. Goldstein, “On the inverse spectral problem for the quasi-periodic Schrödinger equation”, Publications Mathématiques de l'IHÉS, 119, 2014, 217–401 | DOI | Zbl
[10] B. Helffer, J. Sjostrand, “Analyse semi-classique pour l'équation de Harper”, Mém. Soc. Math. France (nouv. série), 34, 1988, 1–113
[11] A. A. Fedotov, “Metod monodromizatsii v teorii pochti-periodicheskikh uravnenii”, Algebra i analiz, 25 (2013), 203–235
[12] A. A. Fedotov, “Matritsa monodromii dlya uravneniya pochti-Mate s maloi konstantoi svyazi”, Funkts. analiz i ego prilozh., 52 (2018), 89–93 | Zbl
[13] A. Fedotov, A series of spectral gaps for the almost Mathieu operator with a small coupling constant, arXiv: 2012.03356 [math.SP]
[14] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, Mir, M., 1982
[15] A. A. Fedotov, “Monodromizatsiya i raznostnye uravneniya s meromorfnymi periodicheskimi koeffitsientami”, Funkts. analiz i ego prilozheniya, 52 (2018), 92–97 | Zbl
[16] Sriram Ganeshan, J. H. Pixley, S. Das Sarma, “Nearest Neighbor Tight Binding Models with an Exact Mobility Edge in One Dimension”, Phys. Rev. Lett., 114 (2015), 146601 | DOI
[17] V. S. Buslaev, A. A. Fedotov, “Uravnenie Kharpera: monodromizatsiya bez kvaziklassiki”, Algebra i analiz, 8 (1996), 65–97