@article{ZNSL_2021_506_a12,
author = {S. A. Nazarov and K. M. Ruotsalainen and P. J. Uusitalo},
title = {Scattering coefficients and threshold resonances in a waveguide with inflating resonator},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {175--209},
year = {2021},
volume = {506},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a12/}
}
TY - JOUR AU - S. A. Nazarov AU - K. M. Ruotsalainen AU - P. J. Uusitalo TI - Scattering coefficients and threshold resonances in a waveguide with inflating resonator JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 175 EP - 209 VL - 506 UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a12/ LA - ru ID - ZNSL_2021_506_a12 ER -
%0 Journal Article %A S. A. Nazarov %A K. M. Ruotsalainen %A P. J. Uusitalo %T Scattering coefficients and threshold resonances in a waveguide with inflating resonator %J Zapiski Nauchnykh Seminarov POMI %D 2021 %P 175-209 %V 506 %U http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a12/ %G ru %F ZNSL_2021_506_a12
S. A. Nazarov; K. M. Ruotsalainen; P. J. Uusitalo. Scattering coefficients and threshold resonances in a waveguide with inflating resonator. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 175-209. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a12/
[1] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973
[2] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningr. un-ta, L., 1980
[3] D. S. Jones, “The eigenvalues of $\nabla^2u+\lambda u=0$ when the boundary conditions are given on semi-infinite domains”, Proc. Camb. Phil. Soc., 49 (1953), 668–684 | DOI | Zbl
[4] S. Molchanov, B. Vainberg, “Scattering solutions in networks of thin fibers; small diameter asymptotics”, Comm. Math. Phys., 273:2 (2007), 533–559 | DOI | MR | Zbl
[5] S. A. Nazarov, “Porogovye rezonansy i virtualnye urovni v spektre tsilindricheskikh i periodicheskikh volnovodov”, Izv. RAN, Seriya matem., 84:6 (2020), 73–130 | MR | Zbl
[6] S. A. Nazarov, “Raznoobraznye proyavleniya anomalii Vuda v lokalno iskrivlennykh kvantovykh volnovodakh”, Zh. vychisl. matem. i matem. fiz., 58:11 (2018), 1911–1930
[7] S. A. Nazarov, “Anomalii rasseyaniya akusticheskikh voln vblizi tochek otsechki nepreryvnogo spektra (obzor)”, Akust. zh., 66:5 (2020), 489–508
[8] S. A. Nazarov, “Volnovod s dvoinym porogovym rezonansom na prostom poroge”, Matem. sb., 211:8 (2020), 20–67 | MR | Zbl
[9] D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. London Math. Soc., 97:3 (2008), 718–752 | DOI | MR | Zbl
[10] K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resomamnces for waveguide junctions”, J. Math. Anal., Appl., 449:1 (2017), 907–925 | DOI | MR | Zbl
[11] F. L. Bakharev, S. A. Nazarov, “Kriterii nalichiya i otsutstviya ogranichennykh reshenii na poroge nepreryvnogo spektra v ob'edinenii kvantovykh volnovodov”, Algebra i analiz, 32:6 (2020), 1–23 | MR
[12] Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Birkhäuser Verlag, Basel, 2000
[13] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989
[14] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972
[15] D. V. Evans, M. Levitin, D. Vasil'ev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl
[16] S. A. Nazarov, B. A. Plamenevskii, “Ob usloviyakh izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Dokl. AN SSSR, 311:3 (1990), 532–536 | Zbl
[17] S. A. Nazarov, B. A .Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994
[18] R. Mitra, S. Li, Analiticheskie metody teorii volnovodov, Mir, M., 1974
[19] N. A. Umov, Uravneniya dvizheniya energii v telakh, Odessa, Tipogr. Ulrikha i Shultse, 1874
[20] J. H. Poynting, “On the transfer of energy in the electromagnetic field”, Phil. Trans. of the Royal Society of London, 175 (1984), 343–361
[21] L. I. Mandelshtam, Sb. tr., v. 2, Lektsii po optike teorii otnositelnosti i kvantovoi mekhanike, Izd-vo AN SSSR, M., 1947
[22] L. Bers, F. John, M. Schehter, Partial differential equations, Interscience, New York, 1964 | Zbl
[23] V. A. Kondratev, “O gladkosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Diff. uravneniya, 6:10 (1970), 1831–1843 | Zbl
[24] V. A. Kondratev, “Osobennosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Diff. uravneniya, 13:11 (1977), 2026–2032 | MR | Zbl
[25] V. A. Nikishkin, “Osobennosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Vestn. Mosk. un-ta, 1979, no. 2, 51–62 | MR | Zbl
[26] V. G. Mazya, B. A. Plamenevskii, “Ob elliptichnosti kraevykh zadach v oblastyakh s kusochno gladkoi granitsei”, Tr. simp. po mekh. sploshnykh sred i rodstvennym probl. analiza, v. 1, Metsniereba, Tbilisi, 1973, 171–181
[27] V. G. Mazya, B. A. Plamenevskii, “Otsenki funktsii Grina i shauderovskie otsenki reshenii ellipticheskikh kraevykh zadach v dvugrannom ugle”, Sib. matem. zh., 19:5 (1978), 1065–1082 | MR
[28] S. A. Nazarov, “Asimptotika sobstvennykh chisel na nepreryvnom spektre regulyarno vozmuschennogo kvantovogo volnovoda”, Teor. i matem. fizika, 167:2 (2011), 239–262
[29] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1953), 3–122