A model of a plane deformation state of a two-dimensional plate with small almost periodic clamped parts of the edge
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 130-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct asymptotics, as the small positive parameters $h$ and $\varepsilon$ tend to zero, of the displacement and stress fields in a planar isotropic body whose boundary is rigidly fixed at $h$-periodially posed boundary parts of length $O(h \varepsilon)$. We propose an asymptotic model that involves the Winkler–Robin boundary conditions connecting the displacement vector and the vector of normal stresses at the boundary, and provides acceptable approximation for the solution of the original problem for a wide range of the parameters $h$ and $\varepsilon$. Error estimates are based on various weighted inequalities.
@article{ZNSL_2021_506_a11,
     author = {S. A. Nazarov and J. Taskinen},
     title = {A model of a plane deformation state of a two-dimensional plate with small almost periodic clamped parts of the edge},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {130--174},
     year = {2021},
     volume = {506},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a11/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - J. Taskinen
TI  - A model of a plane deformation state of a two-dimensional plate with small almost periodic clamped parts of the edge
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 130
EP  - 174
VL  - 506
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a11/
LA  - ru
ID  - ZNSL_2021_506_a11
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A J. Taskinen
%T A model of a plane deformation state of a two-dimensional plate with small almost periodic clamped parts of the edge
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 130-174
%V 506
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a11/
%G ru
%F ZNSL_2021_506_a11
S. A. Nazarov; J. Taskinen. A model of a plane deformation state of a two-dimensional plate with small almost periodic clamped parts of the edge. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 130-174. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a11/

[1] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973

[2] G. Fikera, Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[3] S. A. Nazarov, “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Probl. matem. anal., 16, izd-vo SPbGU, SPb., 1997, 167–192

[4] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | MR | Zbl

[5] V. A. Marchenko, E. Ya. Khruslov, Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Naukova dumka, Kiev, 1974

[6] J. Sanchez-Hubert, E. Sanchez-Palencia, Vibration and Coupling of Continuous System. Asymptotic methods, Springer Verlag, Berlin–Heidelberg, 1989, 421 pp.

[7] Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Birkhäuser Verlag, Basel, 2000

[8] E. Sanchez-Palencia, “Boundary value problems in domains containing perforated walls”, Nonlinear partial differential equations and their applications, Collège de France Seminar (Paris, 1980/1981), v. III, Res. Notes in Math., 70, Pitman, Boston, Mass.-London, 1982, 309–325

[9] F. Murat, “The Neumann sieve”, Nonlinear variational problems (Isola d'Elba, 1983), Res. Notes in Math., 127, Pitman, Boston, MA, 1985, 24–32

[10] M. Lobo, E. Perez, “Asymptotic behaviour of an elastic body with a surface having small stuck regions”, Math. Modelling and Numer. Analysis, 22:4 (1988), 609–624 | DOI | Zbl

[11] S. A. Nazarov, “Dvuchlennaya asimptotika reshenii spektralnykh zadach s singulyarnymi vozmuscheniyami”, Mat. sb., 181:3 (1990), 291–320

[12] M. Lobo, E. Perez, “Boundary homogenization of certain elliptic problems for cylindrical bodies”, Bull. Math. Sci. 2 Ser., 116 (1992), 399–426 | Zbl

[13] G. A. Chechkin, “Usrednenie kraevykh zadach s singulyarnym vozmuscheniem granichnykh uslovii”, Mat. sb., 184:6 (1993), 99–150 | Zbl

[14] C. Constanda, M. Lobo, E. Perez, “On the bending of plate with transverse shear deformation and mixed boundary conditions”, Math. Meth. in Appl. Sci., 18 (1995), 337–344 | DOI | Zbl

[15] M. Lobo, O. A. Oleinik, E. Perez, T. A. Shaposhnikova, “On homogenization of solutions of boundary value problems in domains, perforated along manifolds”, Ann. Scuola Morm. Sup. Pisa Cl. Sci. (4), XXV (1997), 611–629 | Zbl

[16] Y. Amirat, G. A. Chechkin, R. R. Gadyl'shin, “Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with oscillating boundary”, Zh. vychisl. matem. i matem. fiz., 46:1 (2006), 102–115 | MR | Zbl

[17] S. A. Nazarov, “Asimptotika reshenii i modelirovanie zadach teorii uprugosti v oblasti s bystroostsilliruyuschei granitsei”, Izv. RAN, Ser. matem., 72:3 (2008), 103–158 | MR | Zbl

[18] Y. Amirat, O. Bodart, G. A. Chechkin, A. L. Piatnitski, “Asymptotics of a spectral-sieve problem”, J. Math. Anal. Appl., 435:2 (2016), 1652–1671 | DOI | MR | Zbl

[19] A. G. Chechkina, “Usrednenie spektralnykh zadach s singulyarnym vozmuscheniem usloviya Steklova”, Izv. RAN, Ser. matem., 81:1 (2017), 203–240 | MR | Zbl

[20] D. Gomez, S. A. Nazarov, E. Perez, “Homogenization of Winkler-Steklov spectral conditions in three-dimensional linear elasticity”, Z. Angew. Math. Phys., 69:2, 35 | DOI | Zbl

[21] R. R. Gadylshin, A. L. Pyatnitskii, G. A. Chechkin, “Ob asimptotikakh sobstvennykh znachenii kraevoi zadachi v ploskoi oblasti tipa sita Steklova”, Izv. RAN, Ser. mat., 82:6 (2018), 37–64 | MR | Zbl

[22] D. Gómez, S. A. Nazarov, M.-E. Pérez-Martinez, “Asymptotics for spectral problems with rapidly alternating boundary conditions on a strainer Winkler foundation”, J. Elasticity, 142 (2020), 89–120 | DOI | MR

[23] G. P. Cherepanov, Mekhanika khrupkogo razrusheniya, Nauka, M., 1974

[24] Yu. N. Rabotnov, Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1979

[25] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | DOI | MR | Zbl

[26] V. A. Solonnikov, “Ob obschikh kraevykh zadachakh dlya sistem, ellipticheskikh v smysle A. Daglisa–L. Nirenberga. I”, Izv. AN SSSR, Ser. mat., 28:3 (1964), 665–706

[27] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[28] N. Kh. Arutyunyan, S. A. Nazarov, “Ob osobennostyakh funktsii napryazheniya v uglovykh tochkakh poperechnogo secheniya skruchivaemogo sterzhnya s tonkim usilivayuschim pokrytiem”, Prikl. matem. i mekh., 47:1 (1983), 122–132 | MR

[29] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. mat. ob-va, 16, 1963, 219–292

[30] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994

[31] S. P. Timoshenko, Dzh. Guder, Teoriya uprugosti, 2-e izd., Nauka, M., 1979

[32] M. D. Van Daik, Metody vozmuschenii v mekhanike zhidkostei, M., 1967

[33] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989

[34] V. A. Kondratev, O. A. Oleinik, “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstvo Korna”, Usp. matem. nauk, 43:5 (1988), 55–98 | MR

[35] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966

[36] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962