@article{ZNSL_2021_506_a11,
author = {S. A. Nazarov and J. Taskinen},
title = {A model of a plane deformation state of a two-dimensional plate with small almost periodic clamped parts of the edge},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {130--174},
year = {2021},
volume = {506},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a11/}
}
TY - JOUR AU - S. A. Nazarov AU - J. Taskinen TI - A model of a plane deformation state of a two-dimensional plate with small almost periodic clamped parts of the edge JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 130 EP - 174 VL - 506 UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a11/ LA - ru ID - ZNSL_2021_506_a11 ER -
%0 Journal Article %A S. A. Nazarov %A J. Taskinen %T A model of a plane deformation state of a two-dimensional plate with small almost periodic clamped parts of the edge %J Zapiski Nauchnykh Seminarov POMI %D 2021 %P 130-174 %V 506 %U http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a11/ %G ru %F ZNSL_2021_506_a11
S. A. Nazarov; J. Taskinen. A model of a plane deformation state of a two-dimensional plate with small almost periodic clamped parts of the edge. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 130-174. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a11/
[1] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973
[2] G. Fikera, Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974
[3] S. A. Nazarov, “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Probl. matem. anal., 16, izd-vo SPbGU, SPb., 1997, 167–192
[4] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | MR | Zbl
[5] V. A. Marchenko, E. Ya. Khruslov, Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Naukova dumka, Kiev, 1974
[6] J. Sanchez-Hubert, E. Sanchez-Palencia, Vibration and Coupling of Continuous System. Asymptotic methods, Springer Verlag, Berlin–Heidelberg, 1989, 421 pp.
[7] Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Birkhäuser Verlag, Basel, 2000
[8] E. Sanchez-Palencia, “Boundary value problems in domains containing perforated walls”, Nonlinear partial differential equations and their applications, Collège de France Seminar (Paris, 1980/1981), v. III, Res. Notes in Math., 70, Pitman, Boston, Mass.-London, 1982, 309–325
[9] F. Murat, “The Neumann sieve”, Nonlinear variational problems (Isola d'Elba, 1983), Res. Notes in Math., 127, Pitman, Boston, MA, 1985, 24–32
[10] M. Lobo, E. Perez, “Asymptotic behaviour of an elastic body with a surface having small stuck regions”, Math. Modelling and Numer. Analysis, 22:4 (1988), 609–624 | DOI | Zbl
[11] S. A. Nazarov, “Dvuchlennaya asimptotika reshenii spektralnykh zadach s singulyarnymi vozmuscheniyami”, Mat. sb., 181:3 (1990), 291–320
[12] M. Lobo, E. Perez, “Boundary homogenization of certain elliptic problems for cylindrical bodies”, Bull. Math. Sci. 2 Ser., 116 (1992), 399–426 | Zbl
[13] G. A. Chechkin, “Usrednenie kraevykh zadach s singulyarnym vozmuscheniem granichnykh uslovii”, Mat. sb., 184:6 (1993), 99–150 | Zbl
[14] C. Constanda, M. Lobo, E. Perez, “On the bending of plate with transverse shear deformation and mixed boundary conditions”, Math. Meth. in Appl. Sci., 18 (1995), 337–344 | DOI | Zbl
[15] M. Lobo, O. A. Oleinik, E. Perez, T. A. Shaposhnikova, “On homogenization of solutions of boundary value problems in domains, perforated along manifolds”, Ann. Scuola Morm. Sup. Pisa Cl. Sci. (4), XXV (1997), 611–629 | Zbl
[16] Y. Amirat, G. A. Chechkin, R. R. Gadyl'shin, “Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with oscillating boundary”, Zh. vychisl. matem. i matem. fiz., 46:1 (2006), 102–115 | MR | Zbl
[17] S. A. Nazarov, “Asimptotika reshenii i modelirovanie zadach teorii uprugosti v oblasti s bystroostsilliruyuschei granitsei”, Izv. RAN, Ser. matem., 72:3 (2008), 103–158 | MR | Zbl
[18] Y. Amirat, O. Bodart, G. A. Chechkin, A. L. Piatnitski, “Asymptotics of a spectral-sieve problem”, J. Math. Anal. Appl., 435:2 (2016), 1652–1671 | DOI | MR | Zbl
[19] A. G. Chechkina, “Usrednenie spektralnykh zadach s singulyarnym vozmuscheniem usloviya Steklova”, Izv. RAN, Ser. matem., 81:1 (2017), 203–240 | MR | Zbl
[20] D. Gomez, S. A. Nazarov, E. Perez, “Homogenization of Winkler-Steklov spectral conditions in three-dimensional linear elasticity”, Z. Angew. Math. Phys., 69:2, 35 | DOI | Zbl
[21] R. R. Gadylshin, A. L. Pyatnitskii, G. A. Chechkin, “Ob asimptotikakh sobstvennykh znachenii kraevoi zadachi v ploskoi oblasti tipa sita Steklova”, Izv. RAN, Ser. mat., 82:6 (2018), 37–64 | MR | Zbl
[22] D. Gómez, S. A. Nazarov, M.-E. Pérez-Martinez, “Asymptotics for spectral problems with rapidly alternating boundary conditions on a strainer Winkler foundation”, J. Elasticity, 142 (2020), 89–120 | DOI | MR
[23] G. P. Cherepanov, Mekhanika khrupkogo razrusheniya, Nauka, M., 1974
[24] Yu. N. Rabotnov, Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1979
[25] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | DOI | MR | Zbl
[26] V. A. Solonnikov, “Ob obschikh kraevykh zadachakh dlya sistem, ellipticheskikh v smysle A. Daglisa–L. Nirenberga. I”, Izv. AN SSSR, Ser. mat., 28:3 (1964), 665–706
[27] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971
[28] N. Kh. Arutyunyan, S. A. Nazarov, “Ob osobennostyakh funktsii napryazheniya v uglovykh tochkakh poperechnogo secheniya skruchivaemogo sterzhnya s tonkim usilivayuschim pokrytiem”, Prikl. matem. i mekh., 47:1 (1983), 122–132 | MR
[29] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. mat. ob-va, 16, 1963, 219–292
[30] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994
[31] S. P. Timoshenko, Dzh. Guder, Teoriya uprugosti, 2-e izd., Nauka, M., 1979
[32] M. D. Van Daik, Metody vozmuschenii v mekhanike zhidkostei, M., 1967
[33] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989
[34] V. A. Kondratev, O. A. Oleinik, “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstvo Korna”, Usp. matem. nauk, 43:5 (1988), 55–98 | MR
[35] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966
[36] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962