Construction of solutions of Toda lattices by the classical moment problem
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 113-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Making use of formulas of J. Moser for a finite-dimensional Toda lattices, we derive the evolution law for moments of the spectral measure of the semi-infinite Jacobi operator associated with the nonlinear system. This allows us to construct solutions of semi-infinite Toda lattices for a wide class of unbounded initial data by using well-known results from the classical moment problem theory.
@article{ZNSL_2021_506_a10,
     author = {A. S. Mikhailov and V. S. Mikhailov},
     title = {Construction of solutions of {Toda} lattices by the classical moment problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {113--129},
     year = {2021},
     volume = {506},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a10/}
}
TY  - JOUR
AU  - A. S. Mikhailov
AU  - V. S. Mikhailov
TI  - Construction of solutions of Toda lattices by the classical moment problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 113
EP  - 129
VL  - 506
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a10/
LA  - ru
ID  - ZNSL_2021_506_a10
ER  - 
%0 Journal Article
%A A. S. Mikhailov
%A V. S. Mikhailov
%T Construction of solutions of Toda lattices by the classical moment problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 113-129
%V 506
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a10/
%G ru
%F ZNSL_2021_506_a10
A. S. Mikhailov; V. S. Mikhailov. Construction of solutions of Toda lattices by the classical moment problem. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 113-129. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a10/

[1] N. I. Akhiezer, The classical moment problem and some related questions in analysis, Oliver and Boyd, Edinburgh, 1965 | Zbl

[2] F. V. Atkinson, Discrete and continuous boundary problems, Acad. Press, 1964 | Zbl

[3] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | Zbl

[4] M. I. Belishev, “Boundary control and tomography of Riemannian manifolds (the BC-method)”, Russian Math. Surveys, 72:4 (2017), 581–644 | DOI | MR | Zbl

[5] L. de Branges, Hilbert space of entire functions, Prentice-Hall, NJ, 1968

[6] L. D. Faddeev, L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin–Heidelberg, 2007 | Zbl

[7] F. Gesztesy, B. Simon, “$m-$functions and inverse spectral analisys for finite and semi-infinite Jacobi matrices”, J. d'Analyse Math., 73 (1997), 267–297 | DOI | Zbl

[8] E. K. Ifantis, K. N. Vlachou, “Solution of the semi-ininite Toda lattice for unbounded sequences”, Lett. Math. Phys., 59 (2002), 1–17 | DOI | MR | Zbl

[9] E. K. Ifantis, K. N. Vlachou, “Exact solutions of the semi-infinite Toda lattice with applications to the inverse spectral problem”, Abstract Appl. Analys., 5 (2004), 435–451 | DOI | Zbl

[10] A. S. Mikhaylov, V. S. Mikhaylov, S. A. Simonov, “On the relationship between Weyl functions of Jacobi matrices and response vectors for special dynamical systems with discrete time”, Math. Methods Appl. Sci., 41:16 (2018), 6401–6408 | DOI | MR | Zbl

[11] A. S. Mikhaylov, V. S. Mikhaylov, “Inverse dynamic problems for canonical systems and de Branges spaces”, Nanosystems: Phys., Chemist., Math., 9:2 (2018), 215–224 | DOI

[12] A. S. Mikhaylov, V. S. Mikhaylov, “Boundary control method and de Branges spaces. Schrödinger operator, Dirac system, discrete Schrödinger operator”, J. Math. Analys. Appl., 460:2 (2018), 927–953 | DOI | Zbl

[13] A. S. Mikhaylov, V. S. Mikhaylov, “Dynamical inverse problem for the discrete Schrödinger operator”, Nanosystems: Phys., Chemist., Math., 7:5 (2016), 842–854 | DOI

[14] A. S. Mikhaylov, V. S. Mikhaylov, “Dynamic inverse problem for Jacobi matrices”, Inverse Problems and Imaging, 13:3 (2019), 431–447 | DOI | MR | Zbl

[15] A. S. Mikhaylov, V. S. Mikhaylov, “On application of the Boundary control method to classical moment problems”, J. Phys.: Conference Series (to appear)

[16] A. S. Mikhaylov, V. S. Mikhaylov, “Inverse problem for dynamical system associated with Jacobi matrices and classical moment problems”, J. Math. Analys. Appl., 487:1 (2020) | DOI | Zbl

[17] A. S. Mikhaylov, V. S. Mikhaylov, “Finite Toda lattice and classical moment problem”, Nanosystems: Phys., Chemist., Math., 11:1 (2020), 25–29 | DOI

[18] J. Moser, “Finitely many mass points on the line under the influence of an exponential potential – an integrable system”, Lect. Notes Phys., 38, 1975, 67–497

[19] K. Schmüdgen, The moment problem, Springer international publishing, Cham, 2017 | Zbl

[20] B. Simon, “The classical moment problem as a self-adjoint finite difference operator”, Advances Math., 137 (1998), 82–203 | DOI | MR | Zbl

[21] G. Teschl, Jacobi operator and completely integrable nonlinear lattices, Amer. Math. Soc., Providence, 2001

[22] M. Toda, Theory of Nonlinear Lattices, Springer Series in Solid-State Sciences, 20, 2 ed., Springer, Berlin, 1989 | DOI | Zbl