Construction of solutions of Toda lattices by the classical moment problem
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 113-129
Voir la notice de l'article provenant de la source Math-Net.Ru
Making use of formulas of J. Moser for a finite-dimensional Toda lattices, we derive the evolution law for moments of the spectral measure of the semi-infinite Jacobi operator associated with the nonlinear system. This allows us to construct solutions of semi-infinite Toda lattices for a wide class of unbounded initial data by using well-known results from the classical moment problem theory.
@article{ZNSL_2021_506_a10,
author = {A. S. Mikhailov and V. S. Mikhailov},
title = {Construction of solutions of {Toda} lattices by the classical moment problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {113--129},
publisher = {mathdoc},
volume = {506},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a10/}
}
TY - JOUR AU - A. S. Mikhailov AU - V. S. Mikhailov TI - Construction of solutions of Toda lattices by the classical moment problem JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 113 EP - 129 VL - 506 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a10/ LA - ru ID - ZNSL_2021_506_a10 ER -
A. S. Mikhailov; V. S. Mikhailov. Construction of solutions of Toda lattices by the classical moment problem. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 113-129. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a10/