Construction of solutions of Toda lattices by the classical moment problem
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 113-129

Voir la notice de l'article provenant de la source Math-Net.Ru

Making use of formulas of J. Moser for a finite-dimensional Toda lattices, we derive the evolution law for moments of the spectral measure of the semi-infinite Jacobi operator associated with the nonlinear system. This allows us to construct solutions of semi-infinite Toda lattices for a wide class of unbounded initial data by using well-known results from the classical moment problem theory.
@article{ZNSL_2021_506_a10,
     author = {A. S. Mikhailov and V. S. Mikhailov},
     title = {Construction of solutions of {Toda} lattices by the classical moment problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {113--129},
     publisher = {mathdoc},
     volume = {506},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a10/}
}
TY  - JOUR
AU  - A. S. Mikhailov
AU  - V. S. Mikhailov
TI  - Construction of solutions of Toda lattices by the classical moment problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 113
EP  - 129
VL  - 506
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a10/
LA  - ru
ID  - ZNSL_2021_506_a10
ER  - 
%0 Journal Article
%A A. S. Mikhailov
%A V. S. Mikhailov
%T Construction of solutions of Toda lattices by the classical moment problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 113-129
%V 506
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a10/
%G ru
%F ZNSL_2021_506_a10
A. S. Mikhailov; V. S. Mikhailov. Construction of solutions of Toda lattices by the classical moment problem. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 51, Tome 506 (2021), pp. 113-129. http://geodesic.mathdoc.fr/item/ZNSL_2021_506_a10/