@article{ZNSL_2021_505_a9,
author = {A. E. Litvak and D. N. Zaporozhets},
title = {Random section and random simplex inequality},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {162--171},
year = {2021},
volume = {505},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a9/}
}
A. E. Litvak; D. N. Zaporozhets. Random section and random simplex inequality. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 162-171. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a9/
[1] H. Busemann, “Volume in terms of concurrent cross-sections”, Pacific J. Math., 3 (1953), 1–12 | DOI | MR | Zbl
[2] H. Busemann, E. Straus, “Area and normality”, Pacific J.Math., 10 (1960), 35–72 | DOI | MR | Zbl
[3] E. Grinberg, “Isoperimetric inequalities and identities fork-dimensional cross-sections of convex bodies”, Math. Ann., 291 (1991), 75–86 | DOI | MR
[4] H. Furstenberg, I. Tzkoni, “Spherical functions and integralgeometry”, Israel J. Math., 10 (1971), 327–338 | DOI | MR | Zbl
[5] R. Schneider, “Inequalities for random flats meeting a convex body”, J. Appl. Probab., 22 (1985), 710–716 | DOI | MR | Zbl
[6] M. Crofton, “Probability”, Encyclopaedia Brittanica, 19, 1985, 758–788
[7] H. Hadwiger, “Ueber zwei quadratische Distanzintegrale für Eikörper”, Arch. Math. (Basel), 3 (1952), 142–144 | DOI | MR | Zbl
[8] G. Chakerian, “Inequalities for the difference body of a convexbody”, Proc. Amer. Math. Soc., 18 (1967), 879–884 | DOI | MR | Zbl
[9] J. Kingman, “Random secants of a convex body”, J. Appl. Prob., 6 (1969), 660–672 | DOI | Zbl
[10] R. Gardner, “The dual Brunn-Minkowski theory for boundedBorel sets: dual affine quermassintegrals and inequalities”, Adv. Math., 216 (2007), 358–386 | DOI | MR | Zbl
[11] S. Dann, G. Paouris, P. Pivovarov, “Bounding marginaldensities via affine isoperimetry”, Proc. Lond. Math. Soc., 113 (2016), 140–162 | DOI | MR | Zbl
[12] R. Schneider, W. Weil, Stochastic and integral geometry, Springer-Verlag, Berlin, 2008 | Zbl
[13] H. Groemer, “On some mean values associated with a randomlyselected simplex in a convex set”, Pacific J. Math., 45 (1973), 525–533 | DOI | MR | Zbl
[14] F. Götze, A. Gusakova, D. Zaporozhets, “Random affine simplexes”, J. Appl. Probab., 56 (2019), 39–51 | DOI | MR | Zbl
[15] H. Busemann, The geometry of geodesics, Academic Press Inc., New York, 1995