Asymptotics of average case approximation complexity for tensor products of Euler integrated processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 147-161

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider random fields that are tensor products of $d$ Euler integrated processes. The average case approximation complexity for a given random field is defined as the minimal number of values of continuous linear functionals that is needed to approximate the field with relative $2$-average error not exceeding a given threshold $\varepsilon$. In the paper we obtain logarithmic asymptotics of the average case approximation complexity for such random fields for fixed $\varepsilon$ and $d\to\infty$ under rather weak assumptions for the smoothness parameters of the marginal processes.
@article{ZNSL_2021_505_a8,
     author = {A. A. Kravchenko and A. A. Khartov},
     title = {Asymptotics of average case approximation complexity for tensor products of {Euler} integrated processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--161},
     publisher = {mathdoc},
     volume = {505},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a8/}
}
TY  - JOUR
AU  - A. A. Kravchenko
AU  - A. A. Khartov
TI  - Asymptotics of average case approximation complexity for tensor products of Euler integrated processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 147
EP  - 161
VL  - 505
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a8/
LA  - ru
ID  - ZNSL_2021_505_a8
ER  - 
%0 Journal Article
%A A. A. Kravchenko
%A A. A. Khartov
%T Asymptotics of average case approximation complexity for tensor products of Euler integrated processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 147-161
%V 505
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a8/
%G ru
%F ZNSL_2021_505_a8
A. A. Kravchenko; A. A. Khartov. Asymptotics of average case approximation complexity for tensor products of Euler integrated processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 147-161. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a8/