@article{ZNSL_2021_505_a6,
author = {M. K. Dospolova},
title = {Discrete intrinsic volumes and {Grassmann} valuations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {94--137},
year = {2021},
volume = {505},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a6/}
}
M. K. Dospolova. Discrete intrinsic volumes and Grassmann valuations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 94-137. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a6/
[1] D. Amelunxen, M. Lotz, “Intrinsic volumes of polyhedral cones: a combinatorial perspective”, Discrete Comput. Geom., 58:2 (2017), 371–409 | DOI | MR | Zbl
[2] M. Beck, S. Robins, Computing the continuous discretely, second ed., Springer, New York, 2015 | Zbl
[3] M. Beck, S. Robins, S. V. Sam, “Positivity theorems for solid-angle polynomials”, Beitr. Algebra Geom., 51:2 (2010), 493–507 | Zbl
[4] P. Clark, Geometry of numbers with applications to number theory, Lect. Notes, 2013
[5] E. Ehrhart, “Démonstration de la loi de réciprocité pour un polyèdre entier”, C. R. Acad. Sci. Paris Sér. A-B, 265 (1967), A5–A7
[6] E. Ehrhart, “Sur un problème de géométrie diophantienne linéaire. II. Systèmes diophantiens linéaires”, J. Reine Angew. Math., 227 (1967), 25–49 | MR | Zbl
[7] F. Götze, Z. Kabluchko, D. Zaporozhets, “Grassmann angles and absorption probabilities of Gaussian convex hulls”, Zap. Nauchn. Semin. POMI, 501, 2021, 126–148
[8] B. Grünbaum, “Grassmann angles of convex polytopes”, Acta Math., 121 (1968), 293–302 | DOI | MR | Zbl
[9] K. Jochemko, R. Sanyal, “Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem”, J. Eur. Math. Soc. (JEMS), 20:9 (2018), 2181–2208 | DOI | MR | Zbl
[10] J. Lawrence, “A short proof of Euler's relation for convex polytopes”, Canad. Math. Bull., 40:4 (1997), 471–474 | DOI | MR | Zbl
[11] I. G. Macdonald, “The volume of a lattice polyhedron”, Proc. Cambridge Philos. Soc., 59 (1963), 719–726 | DOI | MR | Zbl
[12] I. G. Macdonald, “Polynomials associated with finite cell-complexes”, J. Lond. Math. Soc. (2), 4 (1971), 181–192 | DOI | Zbl
[13] P. McMullen, “Valuations and Euler-type relations on certain classes of convex polytopes”, Proc. Lond. Math. Soc. (3), 35:1 (1977), 113–135 | DOI | Zbl
[14] J. E. Reeve, “On the volume of lattice polyhedra”, Proc. Lond. Math. Soc. (3), 7 (1957), 378–395 | DOI | Zbl
[15] J. E. Reeve, “A further note on the volume of lattice polyhedra”, J. Lond. Math. Soc., 34 (1959), 57–62 | DOI | Zbl
[16] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia Math. Appl., 151, 2014 | Zbl
[17] R. Schneider, W. Weil, Stochastic and integral geometry, Springer-Verlag, Berlin, 2008 | Zbl
[18] R. Stanley, “Decompositions of rational convex polytopes”, Ann. Discrete Math., 6 (1980), 333–342 | DOI | MR | Zbl
[19] R. Stanley, “A monotonicity property of $h$-vectors and $h^*$-vectors”, European J. Combin., 14:3 (1993), 251–258 | DOI | MR | Zbl