Discrete intrinsic volumes and Grassmann valuations
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 94-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a convex lattice polytope $P\subset \mathbb R^d$ of dimension $d$ with vertices in $\mathbb Z^d$, denote by $L(P)$ its discrete volume which is defined as the number of integer points inside $P$. The classical result due to Ehrhart says that for a positive integer $n$, the function $L(nP)$ is a polynomial in $n$ of degree $d$ whose leading coefficient is the volume of $P$. In particular, $L(nP)$ approximates the volume of $nP$ for large $n$. In convex geometry, one of the central notion which generalizes the volume is the intrinsic volumes. The main goal of this paper is to introduce their discrete counterparts. In particular, we show that for them the analogue of the Ehrhart result holds, where the volume is replaced by the intrinsic volume. We also introduce and study a notion of Grassmann valuation which generalizes both the discrete volume and the solid-angle valuation intrduced by Reeve and Macdonald.
@article{ZNSL_2021_505_a6,
     author = {M. K. Dospolova},
     title = {Discrete intrinsic volumes and {Grassmann} valuations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {94--137},
     year = {2021},
     volume = {505},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a6/}
}
TY  - JOUR
AU  - M. K. Dospolova
TI  - Discrete intrinsic volumes and Grassmann valuations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 94
EP  - 137
VL  - 505
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a6/
LA  - ru
ID  - ZNSL_2021_505_a6
ER  - 
%0 Journal Article
%A M. K. Dospolova
%T Discrete intrinsic volumes and Grassmann valuations
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 94-137
%V 505
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a6/
%G ru
%F ZNSL_2021_505_a6
M. K. Dospolova. Discrete intrinsic volumes and Grassmann valuations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 94-137. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a6/

[1] D. Amelunxen, M. Lotz, “Intrinsic volumes of polyhedral cones: a combinatorial perspective”, Discrete Comput. Geom., 58:2 (2017), 371–409 | DOI | MR | Zbl

[2] M. Beck, S. Robins, Computing the continuous discretely, second ed., Springer, New York, 2015 | Zbl

[3] M. Beck, S. Robins, S. V. Sam, “Positivity theorems for solid-angle polynomials”, Beitr. Algebra Geom., 51:2 (2010), 493–507 | Zbl

[4] P. Clark, Geometry of numbers with applications to number theory, Lect. Notes, 2013

[5] E. Ehrhart, “Démonstration de la loi de réciprocité pour un polyèdre entier”, C. R. Acad. Sci. Paris Sér. A-B, 265 (1967), A5–A7

[6] E. Ehrhart, “Sur un problème de géométrie diophantienne linéaire. II. Systèmes diophantiens linéaires”, J. Reine Angew. Math., 227 (1967), 25–49 | MR | Zbl

[7] F. Götze, Z. Kabluchko, D. Zaporozhets, “Grassmann angles and absorption probabilities of Gaussian convex hulls”, Zap. Nauchn. Semin. POMI, 501, 2021, 126–148

[8] B. Grünbaum, “Grassmann angles of convex polytopes”, Acta Math., 121 (1968), 293–302 | DOI | MR | Zbl

[9] K. Jochemko, R. Sanyal, “Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem”, J. Eur. Math. Soc. (JEMS), 20:9 (2018), 2181–2208 | DOI | MR | Zbl

[10] J. Lawrence, “A short proof of Euler's relation for convex polytopes”, Canad. Math. Bull., 40:4 (1997), 471–474 | DOI | MR | Zbl

[11] I. G. Macdonald, “The volume of a lattice polyhedron”, Proc. Cambridge Philos. Soc., 59 (1963), 719–726 | DOI | MR | Zbl

[12] I. G. Macdonald, “Polynomials associated with finite cell-complexes”, J. Lond. Math. Soc. (2), 4 (1971), 181–192 | DOI | Zbl

[13] P. McMullen, “Valuations and Euler-type relations on certain classes of convex polytopes”, Proc. Lond. Math. Soc. (3), 35:1 (1977), 113–135 | DOI | Zbl

[14] J. E. Reeve, “On the volume of lattice polyhedra”, Proc. Lond. Math. Soc. (3), 7 (1957), 378–395 | DOI | Zbl

[15] J. E. Reeve, “A further note on the volume of lattice polyhedra”, J. Lond. Math. Soc., 34 (1959), 57–62 | DOI | Zbl

[16] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia Math. Appl., 151, 2014 | Zbl

[17] R. Schneider, W. Weil, Stochastic and integral geometry, Springer-Verlag, Berlin, 2008 | Zbl

[18] R. Stanley, “Decompositions of rational convex polytopes”, Ann. Discrete Math., 6 (1980), 333–342 | DOI | MR | Zbl

[19] R. Stanley, “A monotonicity property of $h$-vectors and $h^*$-vectors”, European J. Combin., 14:3 (1993), 251–258 | DOI | MR | Zbl