Discrete intrinsic volumes and Grassmann valuations
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 94-137

Voir la notice de l'article provenant de la source Math-Net.Ru

For a convex lattice polytope $P\subset \mathbb R^d$ of dimension $d$ with vertices in $\mathbb Z^d$, denote by $L(P)$ its discrete volume which is defined as the number of integer points inside $P$. The classical result due to Ehrhart says that for a positive integer $n$, the function $L(nP)$ is a polynomial in $n$ of degree $d$ whose leading coefficient is the volume of $P$. In particular, $L(nP)$ approximates the volume of $nP$ for large $n$. In convex geometry, one of the central notion which generalizes the volume is the intrinsic volumes. The main goal of this paper is to introduce their discrete counterparts. In particular, we show that for them the analogue of the Ehrhart result holds, where the volume is replaced by the intrinsic volume. We also introduce and study a notion of Grassmann valuation which generalizes both the discrete volume and the solid-angle valuation intrduced by Reeve and Macdonald.
@article{ZNSL_2021_505_a6,
     author = {M. K. Dospolova},
     title = {Discrete intrinsic volumes and {Grassmann} valuations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {94--137},
     publisher = {mathdoc},
     volume = {505},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a6/}
}
TY  - JOUR
AU  - M. K. Dospolova
TI  - Discrete intrinsic volumes and Grassmann valuations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 94
EP  - 137
VL  - 505
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a6/
LA  - ru
ID  - ZNSL_2021_505_a6
ER  - 
%0 Journal Article
%A M. K. Dospolova
%T Discrete intrinsic volumes and Grassmann valuations
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 94-137
%V 505
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a6/
%G ru
%F ZNSL_2021_505_a6
M. K. Dospolova. Discrete intrinsic volumes and Grassmann valuations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 94-137. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a6/