Calculation of constant values in pseudometric lemma at one-dimension method of smooth triangular functions
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 87-93
Voir la notice du chapitre de livre
In this paper, we consider the one-dimension method of smooth triangular functions. We obtain the dependence of the constant on the input parameters of the lemma, which allows us to reduce the problem of estimating $\rho_h(F,G)$ to the problem of estimating $\rho^{(J)}_{h,\tau}(F,G)$.
@article{ZNSL_2021_505_a5,
author = {Ya. S. Golikova},
title = {Calculation of constant values in pseudometric lemma at one-dimension method of smooth triangular functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {87--93},
year = {2021},
volume = {505},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a5/}
}
TY - JOUR AU - Ya. S. Golikova TI - Calculation of constant values in pseudometric lemma at one-dimension method of smooth triangular functions JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 87 EP - 93 VL - 505 UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a5/ LA - ru ID - ZNSL_2021_505_a5 ER -
Ya. S. Golikova. Calculation of constant values in pseudometric lemma at one-dimension method of smooth triangular functions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 87-93. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a5/
[1] T. V. Arak, A. Yu. Zaitsev, “Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin”, Tr. MIAN SSSR, 174, 1986, 3–214 | MR
[2] A. Yu. Zaitsev, “K mnogomernomu obobscheniyu metoda treugolnykh funktsii”, Zap. nauchn. semin. LOMI, 158, 1987, 81–104 | Zbl
[3] Ya. S. Golikova, “Vychislenie konstant v lemme o funktsiyakh w(x) i g(t) v metode gladkikh treugolnykh funktsii”, Zap. nauchn. semin. POMI, 495, 2020, 135–146 | MR