@article{ZNSL_2021_505_a3,
author = {A. N. Borodin},
title = {Distribution of functionals of {Brownian} motion with linear drift killed elastically at zero},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {62--74},
year = {2021},
volume = {505},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a3/}
}
A. N. Borodin. Distribution of functionals of Brownian motion with linear drift killed elastically at zero. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 62-74. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a3/
[1] A. N. Borodin, P. Salminen, Spravochnik po brounovskomu dvizheniyu. Fakty i formuly, Lan, Sankt-Peterburg, 2016
[2] A. N. Borodin, P. Salminen, “On the local time process of a skew Brownian motion”, Trans. Amer. Math. Soc., 372:5 (2019), 3597–3618 | DOI | MR | Zbl
[3] A. N. Borodin, “Raspredeleniya funktsionalov ot lokalnogo vremeni brounovskogo dvizheniya s razryvnym snosom”, Zap. nauchn. semin. POMI, 495, 2020, 102–121
[4] A. N. Borodin, Sluchainye protsessy, Lan, Sankt-Peterburg, 2017
[5] F. B. Knight, “Random walks and a sojourn density process of Brownian motion”, Trans. Amer. Math. Soc., 109 (1963), 56–86 | DOI | MR | Zbl
[6] D. B. Ray, “Sojourn times of a diffusion process”, Ill. J. Math., 7 (1963), 615–630 | Zbl
[7] G. N. Kinkladze, “A note on the structure of processes the measure of which is absolutely continuous with respect to Wiener process modulus measure”, Stochastics, 8 (1982), 39–84 | DOI | MR
[8] A. N. Borodin, “Raspredeleniya funktsionalov ot skoshennogo brounovskogo dvizheniya s razryvnym snosom”, Zap. nauchn. semin. POMI, 50, 2021, 36–51
[9] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979