Stochastic model of the Cauchy–Neumann problem for nonlinear parabolic equations
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 38-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We derive stochastic equations to describe reflected diffusion processes associated with the Cauchy–Neumann problem for nonlinear parabolic equations in non-divergent form in the half-space. As a result we obtain probabilistic representations of weak solutions to this problem.
@article{ZNSL_2021_505_a2,
     author = {Ya. I. Belopolskaya},
     title = {Stochastic model of the {Cauchy{\textendash}Neumann} problem for nonlinear parabolic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {38--61},
     year = {2021},
     volume = {505},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a2/}
}
TY  - JOUR
AU  - Ya. I. Belopolskaya
TI  - Stochastic model of the Cauchy–Neumann problem for nonlinear parabolic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 38
EP  - 61
VL  - 505
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a2/
LA  - ru
ID  - ZNSL_2021_505_a2
ER  - 
%0 Journal Article
%A Ya. I. Belopolskaya
%T Stochastic model of the Cauchy–Neumann problem for nonlinear parabolic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 38-61
%V 505
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a2/
%G ru
%F ZNSL_2021_505_a2
Ya. I. Belopolskaya. Stochastic model of the Cauchy–Neumann problem for nonlinear parabolic equations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 38-61. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a2/

[1] H. P. McKean, “A class of Markov processes associated with non-linear parabolic equations”, Proceedings of the National Academy of Sci., 56:6 (1966), 1907–1911 | DOI | MR | Zbl

[2] A. Le Cavil, N. Oudjane, F. Russo, “Probabilistic representation of a class of non-conservative nonlinear Partial Differential Equations”, ALEA, Lat. Am. J. Probab. Math. Stat., 13 (2016), 1189–1233 | DOI | MR | Zbl

[3] A. V. Skorokhod, “Stokhasticheskie uravneniya dlya protsessov diffuzii s granitsami”, Teoriya veroyatn. i ee primen., 6:3 (1961), 287–298 | MR | Zbl

[4] M. I. Freidlin, “Diffuzionnye protsessy s otrazheniem i zadacha s kosoi proizvodnoi na mnogoobrazii s kraem”, TViP, 8:1 (1963), 80–88 | Zbl

[5] A. Sznitman, “Nonlinear reflecting diffusion process and the propagation of chaos and associated fluctuations”, J. Funct. Anal., 56:3 (1984), 311–336 | DOI | MR | Zbl

[6] A.-S. Sznitman, “Topics in propagation of chaos”, Ecole d'éte de probabilités de Saint-Flour XIX (1989), Springer, 1991, 165–251

[7] A. V. Skorokhod, I. I. Gikhman, Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968

[8] G. A. Brosamler, “A probabilistic solution of the Neumann problem”, Math. Scand., 38 (1976), 137–147 | DOI | MR | Zbl

[9] M. Freidlin, Functional integration and partial differential equations, Princeton Univ. Press, 1985 | Zbl

[10] B. Jourdain, S. Méléard, “Probabilistic interpretation and particle method for vortex equations with Neumann's boundary condition”, Proceedings of the Edinburgh Mathematical Society, 47 (2004), 597–624 | DOI | MR | Zbl

[11] R. F. Bass, P. Hsu, “Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains”, Ann. Probab., 19:2 (1991), 486–508 | DOI | MR | Zbl

[12] A. Benchérif-Madani, E. Pardoux, “A probabilistic formula for a Poisson equation with Neumann boundary condition”, Stoch. Anal. Appl., 27 (2009), 739–746 | DOI | MR | Zbl

[13] R. F. Anderson, S. Orey, “Small random perturbation of dinamical systems with reflection boundary”, Nagoya Math. J., 60 (1976), 189–216 | DOI | MR | Zbl