Random algebraic numbers
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 294-311 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Suppose we are given a set of real algebraic numbers of arbitrary fixed degree. Consider a family of measures on a given set. The paper presents a method for constructing a sequence of such measures that weakly converges to the Cauchy distribution. To do this, we will use the theory of random polynomials.
@article{ZNSL_2021_505_a16,
     author = {A. S. Tokmachev},
     title = {Random algebraic numbers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {294--311},
     year = {2021},
     volume = {505},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a16/}
}
TY  - JOUR
AU  - A. S. Tokmachev
TI  - Random algebraic numbers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 294
EP  - 311
VL  - 505
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a16/
LA  - ru
ID  - ZNSL_2021_505_a16
ER  - 
%0 Journal Article
%A A. S. Tokmachev
%T Random algebraic numbers
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 294-311
%V 505
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a16/
%G ru
%F ZNSL_2021_505_a16
A. S. Tokmachev. Random algebraic numbers. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 294-311. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a16/

[1] P. Erdös, M. Kac, E. R. van Kampen, A. Wintner, “Ramanujan sums and almost periodic functions”, Studia Math., 9 (1940), 43–53 | DOI | MR

[2] M. Mikolás, “Farey series and their connection with the prime numberproblem. I”, Acta Univ. Szeged. Sect. Sci. Math., 13 (1949), 93–117 | MR | Zbl

[3] H. Niederreiter, “The distribution of Farey points”, Math. Ann., 201 (1973), 341–345 | DOI | MR | Zbl

[4] N. Petroni, Taking rational numbers at random, 2019, arXiv: 1908.06944

[5] M. Ostrik, V. Tsfasman, Algebraicheskaya geometriya i teoriya chisel: ratsionalnye i ellipticheskie krivye, Biblioteka “Matematicheskoe prosveschenie”, 8, 2011

[6] D. N. Zaporozhets, “Random polynomials and geometric probability”, Dokl. Akad. Nauk, 400:3 (2005), 299–303 | MR

[7] F. Götze, D. Koleda, D. Zaporozhets, “Joint distribution of conjugate algebraic numbers: a random polynomial approach”, Adv. Math., 359 (2020), 33 | DOI | Zbl

[8] M. Kac, “On the average number of real roots of a random algebraic equation”, Bull. Amer. Math. Soc., 49 (1943), 314–320 | DOI | MR | Zbl

[9] D. Koleda, “On the density function of the distribution of real algebraic numbers”, J. Théor. Nombres Bordeaux, 29:1 (2017), 179–200 | DOI | MR | Zbl

[10] A. Edelman, E. Kostlan, How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc. (N.S.), 32:1 (1995), 1–37 | DOI | MR | Zbl