@article{ZNSL_2021_505_a16,
author = {A. S. Tokmachev},
title = {Random algebraic numbers},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {294--311},
year = {2021},
volume = {505},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a16/}
}
A. S. Tokmachev. Random algebraic numbers. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 294-311. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a16/
[1] P. Erdös, M. Kac, E. R. van Kampen, A. Wintner, “Ramanujan sums and almost periodic functions”, Studia Math., 9 (1940), 43–53 | DOI | MR
[2] M. Mikolás, “Farey series and their connection with the prime numberproblem. I”, Acta Univ. Szeged. Sect. Sci. Math., 13 (1949), 93–117 | MR | Zbl
[3] H. Niederreiter, “The distribution of Farey points”, Math. Ann., 201 (1973), 341–345 | DOI | MR | Zbl
[4] N. Petroni, Taking rational numbers at random, 2019, arXiv: 1908.06944
[5] M. Ostrik, V. Tsfasman, Algebraicheskaya geometriya i teoriya chisel: ratsionalnye i ellipticheskie krivye, Biblioteka “Matematicheskoe prosveschenie”, 8, 2011
[6] D. N. Zaporozhets, “Random polynomials and geometric probability”, Dokl. Akad. Nauk, 400:3 (2005), 299–303 | MR
[7] F. Götze, D. Koleda, D. Zaporozhets, “Joint distribution of conjugate algebraic numbers: a random polynomial approach”, Adv. Math., 359 (2020), 33 | DOI | Zbl
[8] M. Kac, “On the average number of real roots of a random algebraic equation”, Bull. Amer. Math. Soc., 49 (1943), 314–320 | DOI | MR | Zbl
[9] D. Koleda, “On the density function of the distribution of real algebraic numbers”, J. Théor. Nombres Bordeaux, 29:1 (2017), 179–200 | DOI | MR | Zbl
[10] A. Edelman, E. Kostlan, How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc. (N.S.), 32:1 (1995), 1–37 | DOI | MR | Zbl