Random algebraic numbers
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 294-311

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose we are given a set of real algebraic numbers of arbitrary fixed degree. Consider a family of measures on a given set. The paper presents a method for constructing a sequence of such measures that weakly converges to the Cauchy distribution. To do this, we will use the theory of random polynomials.
@article{ZNSL_2021_505_a16,
     author = {A. S. Tokmachev},
     title = {Random algebraic numbers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {294--311},
     publisher = {mathdoc},
     volume = {505},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a16/}
}
TY  - JOUR
AU  - A. S. Tokmachev
TI  - Random algebraic numbers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 294
EP  - 311
VL  - 505
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a16/
LA  - ru
ID  - ZNSL_2021_505_a16
ER  - 
%0 Journal Article
%A A. S. Tokmachev
%T Random algebraic numbers
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 294-311
%V 505
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a16/
%G ru
%F ZNSL_2021_505_a16
A. S. Tokmachev. Random algebraic numbers. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 294-311. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a16/