The lower bound of the minimax risk in a problem of estimating the function in stationary gaussian noise
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 282-293 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, we construct the lower bounds of the minimax risk in the estimation problem, as we observe the unknoun pseudo periodic function in a Gaussian stationary noise with the spectral density satisfying some version of the Muckenhoupt condition.
@article{ZNSL_2021_505_a15,
     author = {V. N. Solev},
     title = {The lower bound of the minimax risk in a problem of estimating the function in stationary gaussian noise},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {282--293},
     year = {2021},
     volume = {505},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a15/}
}
TY  - JOUR
AU  - V. N. Solev
TI  - The lower bound of the minimax risk in a problem of estimating the function in stationary gaussian noise
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 282
EP  - 293
VL  - 505
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a15/
LA  - ru
ID  - ZNSL_2021_505_a15
ER  - 
%0 Journal Article
%A V. N. Solev
%T The lower bound of the minimax risk in a problem of estimating the function in stationary gaussian noise
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 282-293
%V 505
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a15/
%G ru
%F ZNSL_2021_505_a15
V. N. Solev. The lower bound of the minimax risk in a problem of estimating the function in stationary gaussian noise. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 282-293. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a15/

[1] Yu. A. Rozanov, Statsionarnye protsessy, Mir, M., 1963

[2] I. A. Ibragimov, Yu. A. Rozanov, Gaussovskie protsessy, Mir, M., 1974

[3] D. L. Donoho, R. C. Liu, B. MacGibbon, “Minimax risk over hyperrectangles, and implications”, The Ann. Statist., 18:3 (1990), 1416–1437 | DOI | MR | Zbl

[4] W. Stepanoff, “Sur quelques generalisations des fonctions presque-periodiques”, Comptes Rendus, 181 (1925), 90–92 | Zbl

[5] N. Viner, R. Peli, Preobrazovanie Fure v kompleksnoi ploskosti, Nauka, M., 1964

[6] B. J. Garnett, Bounded Analytic Functions, Academic Press, N.Y., 1981 | Zbl

[7] V. N. Solev, “Uslovie lokalnoi asimptoticheskoi normalnosti dlya gaussovskikh statsionarnykh protsessov”, Zap. nauchn. semin. POMI, 278, 2001, 225–247 | Zbl

[8] V. N. Solev, “Otsenka funktsii, nablyudaemoi na fone statsionarnogo shuma: diskretizatsiya”, Zap. nauchn. semin. POMI, 441, 2015, 286–298

[9] V. N. Solev, “Adaptivnaya otsenka funktsii, nablyudaemoi na fone gaussovskogo statsionarnogo shuma”, Zap. nauchn. semin. POMI, 454, 2016, 261–275

[10] V. N. Solev, “Lokalnaya versiya usloviya Makkenkhaupta i tochnost otsenivaniya neizvestnoi psevdo-periodicheskoi funktsii, nablyudaemoi na fone statsionarnogo shuma”, Zap. nauchn. semin. POMI, 466, 2017, 261–275

[11] V. N. Solev, “Otsenka funktsii v gaussovskom statsionarnom shume: novye spektralnye usloviya”, Zap. nauchn. semin. POMI, 486, 2018, 275–285

[12] V. N. Solev, “Otsenka funktsii v gaussovskom statsionarnom shume”, Zap. nauchn. semin. POMI, 495, 2020, 277–290 | MR

[13] S. V. Reshetov, “Minimaksnyi risk dlya kvadratichno vypuklykh mnozhestv”, Zap. nauchn. semin. POMI, 368, 2009, 181–189

[14] S. V. Reshetov, “Minimaksnaya otsenka psevdo-periodicheskoi funktsii, nablyudaemoi na fone statsionarnogo shuma”, Vestnik SPbGU, ser. 1, 2 (2010), 106–115