The lower bound of the minimax risk in a problem of estimating the function in stationary gaussian noise
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 282-293

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we construct the lower bounds of the minimax risk in the estimation problem, as we observe the unknoun pseudo periodic function in a Gaussian stationary noise with the spectral density satisfying some version of the Muckenhoupt condition.
@article{ZNSL_2021_505_a15,
     author = {V. N. Solev},
     title = {The lower bound of the minimax risk in a problem of estimating the function in stationary gaussian noise},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {282--293},
     publisher = {mathdoc},
     volume = {505},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a15/}
}
TY  - JOUR
AU  - V. N. Solev
TI  - The lower bound of the minimax risk in a problem of estimating the function in stationary gaussian noise
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 282
EP  - 293
VL  - 505
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a15/
LA  - ru
ID  - ZNSL_2021_505_a15
ER  - 
%0 Journal Article
%A V. N. Solev
%T The lower bound of the minimax risk in a problem of estimating the function in stationary gaussian noise
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 282-293
%V 505
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a15/
%G ru
%F ZNSL_2021_505_a15
V. N. Solev. The lower bound of the minimax risk in a problem of estimating the function in stationary gaussian noise. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 282-293. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a15/