@article{ZNSL_2021_505_a14,
author = {J. Randon-Furling and D. Zaporozhets},
title = {Convex hulls of several multidimensional {Gaussian} random walks},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {244--281},
year = {2021},
volume = {505},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a14/}
}
J. Randon-Furling; D. Zaporozhets. Convex hulls of several multidimensional Gaussian random walks. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 244-281. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a14/
[1] F. Affentranger, “The convex hull of random points with spherically symmetric distributions”, Rend. Sem. Mat. Univ. Politec. Torino, 49:3 (1991) (1993), 359–383 | MR
[2] T. W. Anderson, An introduction to multivariate statistical analysis, Wiley Series in Probability and Statistics, third edition, Wiley-Interscience John Wiley Sons, Hoboken, NJ, 2003 | Zbl
[3] O. Barndorff-Nielsen, G. Baxter, “Combinatorial lemmas in higher dimensions”, Trans. Amer. Math. Soc., 108 (1963), 313–325 | DOI | MR | Zbl
[4] H. Carnal, “Die konvexe {H}ülle von $n$ rotationssymmetrisch verteilten Punkten”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 15 (1970), 168–176 | DOI | MR | Zbl
[5] R. Dwyer, “Convex hulls of samples from spherically symmetric distributions”, First Canadian Conference on Computational Geometry (Montreal, PQ, 1989), Discrete Appl. Math., 31, no. 2, 1991, 113–132 | DOI | MR | Zbl
[6] J. Grote, Z. Kabluchko, Ch. Thäle, “Limit theorems for random simplices in high dimensions”, ALEA Lat. Am. J. Probab. Math. Stat., 16:1 (2019), 141–177 | DOI | MR | Zbl
[7] E. Hashorva, “Asymptotics of the convex hull of spherically symmetric samples”, Discrete Appl. Math., 159:4 (2011), 201–211 | DOI | MR | Zbl
[8] M. Henk, M. A. Hernández Cifre, “Intrinsic volumes and successive radii”, J. Math. Anal. Appl., 343:2 (2008), 733–742 | DOI | MR | Zbl
[9] D. Hug, G. Munsonius, M. Reitzner, “Asymptotic mean values of Gaussian polytopes”, Beiträge Algebra Geom., 45:2 (2004), 531–548 | MR | Zbl
[10] Z. Kabluchko, D. Temesvari, Ch. Thäle, “Expected intrinsic volumes and facet numbers of random beta-polytopes”, Math. Nachr., 292:1 (2019), 79–105 | DOI | MR | Zbl
[11] Z. Kabluchko, V. Vysotsky, D. Zaporozhets, “Convex hulls of random walks: expected number of faces and face probabilities”, Adv. Math., 320 (2017), 595–629 | DOI | MR | Zbl
[12] Z. Kabluchko, V. Vysotsky, D. Zaporozhets, “Convex hulls of random walks, hyperplane arrangements, and Weyl chambers”, Geom. Funct. Anal., 27:4 (2017), 880–918 | DOI | MR | Zbl
[13] Z. Kabluchko, D. Zaporozhets, “Expected volumes of Gaussian polytopes, external angles, and multiple order statistics”, Trans. Amer. Math. Soc., 372:3 (2019), 1709–1733 | DOI | MR | Zbl
[14] T. Moseeva, “Distribution of the volume of weighted gaussian simplex”, Zap. Nauchn. Semin. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 495, 2020, 187–197 | MR
[15] H. H. Nguyen, V. Vu, “Random matrices: law of the determinant”, Ann. Probab., 42:1 (2014), 146–167 | DOI | MR | Zbl
[16] G. Paouris, P. Pivovarov, “Small-ball probabilities for the volume of random convex sets”, Discrete Comput. Geom., 49:3 (2013), 601–646 | DOI | MR | Zbl
[17] J. Randon-Furling, “Convex hull of n planar Brownian paths: an exact formula for the average number of edges”, J. Phys. A: Mathematical and Theoretical, 46:1 (2012), 015004 | DOI | MR
[18] H. Raynaud, “Sur l'enveloppe convexe des nuages de points aléatoires dans $R^{n}$. I”, J. Appl. Probab., 7 (1970), 35–48 | Zbl
[19] R. Schneider, W. Weil, Stochastic and Integral Geometry, Probability and its Applications (New York), Springer-Verlag, Berlin, 2008 | DOI | Zbl
[20] E. Sparre Andersen, “On the number of positive sums of random variables”, Skand. Aktuarietidskr., 32 (1949), 27–36 | MR
[21] E. Sparre Andersen, “On sums of symmetrically dependent random variables”, Skand. Aktuarietidskr., 36 (1953), 123–138 | MR
[22] E. Sparre Andersen, “On the fluctuations of sums of random variables. II”, Math. Scand., 2 (1954), 195–223 | MR | Zbl
[23] V. Vysotsky, D. Zaporozhets, “Convex hulls of multidimensional random walks”, Trans. Amer. Math. Soc., 370:11 (2018), 7985–8012 | DOI | MR | Zbl
[24] J. G. Wendel, “A problem in geometric probability”, Math. Scand., 11 (1962), 109–111 | DOI | MR | Zbl