Convex hulls of several multidimensional Gaussian random walks
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 244-281

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive explicit formulae for the expected volume and the expected number of facets of the convex hull of several multidimensional Gaussian random walks in terms of the Gaussian persistence probabilities. Special cases include the already known results about the convex hull of a single Gaussian random walk and the $d$-dimensional Gaussian polytope with or without the origin.
@article{ZNSL_2021_505_a14,
     author = {J. Randon-Furling and D. Zaporozhets},
     title = {Convex hulls of several multidimensional {Gaussian} random walks},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {244--281},
     publisher = {mathdoc},
     volume = {505},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a14/}
}
TY  - JOUR
AU  - J. Randon-Furling
AU  - D. Zaporozhets
TI  - Convex hulls of several multidimensional Gaussian random walks
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 244
EP  - 281
VL  - 505
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a14/
LA  - en
ID  - ZNSL_2021_505_a14
ER  - 
%0 Journal Article
%A J. Randon-Furling
%A D. Zaporozhets
%T Convex hulls of several multidimensional Gaussian random walks
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 244-281
%V 505
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a14/
%G en
%F ZNSL_2021_505_a14
J. Randon-Furling; D. Zaporozhets. Convex hulls of several multidimensional Gaussian random walks. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 244-281. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a14/