Convex hulls of several multidimensional Gaussian random walks
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 244-281 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We derive explicit formulae for the expected volume and the expected number of facets of the convex hull of several multidimensional Gaussian random walks in terms of the Gaussian persistence probabilities. Special cases include the already known results about the convex hull of a single Gaussian random walk and the $d$-dimensional Gaussian polytope with or without the origin.
@article{ZNSL_2021_505_a14,
     author = {J. Randon-Furling and D. Zaporozhets},
     title = {Convex hulls of several multidimensional {Gaussian} random walks},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {244--281},
     year = {2021},
     volume = {505},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a14/}
}
TY  - JOUR
AU  - J. Randon-Furling
AU  - D. Zaporozhets
TI  - Convex hulls of several multidimensional Gaussian random walks
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 244
EP  - 281
VL  - 505
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a14/
LA  - en
ID  - ZNSL_2021_505_a14
ER  - 
%0 Journal Article
%A J. Randon-Furling
%A D. Zaporozhets
%T Convex hulls of several multidimensional Gaussian random walks
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 244-281
%V 505
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a14/
%G en
%F ZNSL_2021_505_a14
J. Randon-Furling; D. Zaporozhets. Convex hulls of several multidimensional Gaussian random walks. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 244-281. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a14/

[1] F. Affentranger, “The convex hull of random points with spherically symmetric distributions”, Rend. Sem. Mat. Univ. Politec. Torino, 49:3 (1991) (1993), 359–383 | MR

[2] T. W. Anderson, An introduction to multivariate statistical analysis, Wiley Series in Probability and Statistics, third edition, Wiley-Interscience John Wiley Sons, Hoboken, NJ, 2003 | Zbl

[3] O. Barndorff-Nielsen, G. Baxter, “Combinatorial lemmas in higher dimensions”, Trans. Amer. Math. Soc., 108 (1963), 313–325 | DOI | MR | Zbl

[4] H. Carnal, “Die konvexe {H}ülle von $n$ rotationssymmetrisch verteilten Punkten”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 15 (1970), 168–176 | DOI | MR | Zbl

[5] R. Dwyer, “Convex hulls of samples from spherically symmetric distributions”, First Canadian Conference on Computational Geometry (Montreal, PQ, 1989), Discrete Appl. Math., 31, no. 2, 1991, 113–132 | DOI | MR | Zbl

[6] J. Grote, Z. Kabluchko, Ch. Thäle, “Limit theorems for random simplices in high dimensions”, ALEA Lat. Am. J. Probab. Math. Stat., 16:1 (2019), 141–177 | DOI | MR | Zbl

[7] E. Hashorva, “Asymptotics of the convex hull of spherically symmetric samples”, Discrete Appl. Math., 159:4 (2011), 201–211 | DOI | MR | Zbl

[8] M. Henk, M. A. Hernández Cifre, “Intrinsic volumes and successive radii”, J. Math. Anal. Appl., 343:2 (2008), 733–742 | DOI | MR | Zbl

[9] D. Hug, G. Munsonius, M. Reitzner, “Asymptotic mean values of Gaussian polytopes”, Beiträge Algebra Geom., 45:2 (2004), 531–548 | MR | Zbl

[10] Z. Kabluchko, D. Temesvari, Ch. Thäle, “Expected intrinsic volumes and facet numbers of random beta-polytopes”, Math. Nachr., 292:1 (2019), 79–105 | DOI | MR | Zbl

[11] Z. Kabluchko, V. Vysotsky, D. Zaporozhets, “Convex hulls of random walks: expected number of faces and face probabilities”, Adv. Math., 320 (2017), 595–629 | DOI | MR | Zbl

[12] Z. Kabluchko, V. Vysotsky, D. Zaporozhets, “Convex hulls of random walks, hyperplane arrangements, and Weyl chambers”, Geom. Funct. Anal., 27:4 (2017), 880–918 | DOI | MR | Zbl

[13] Z. Kabluchko, D. Zaporozhets, “Expected volumes of Gaussian polytopes, external angles, and multiple order statistics”, Trans. Amer. Math. Soc., 372:3 (2019), 1709–1733 | DOI | MR | Zbl

[14] T. Moseeva, “Distribution of the volume of weighted gaussian simplex”, Zap. Nauchn. Semin. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 495, 2020, 187–197 | MR

[15] H. H. Nguyen, V. Vu, “Random matrices: law of the determinant”, Ann. Probab., 42:1 (2014), 146–167 | DOI | MR | Zbl

[16] G. Paouris, P. Pivovarov, “Small-ball probabilities for the volume of random convex sets”, Discrete Comput. Geom., 49:3 (2013), 601–646 | DOI | MR | Zbl

[17] J. Randon-Furling, “Convex hull of n planar Brownian paths: an exact formula for the average number of edges”, J. Phys. A: Mathematical and Theoretical, 46:1 (2012), 015004 | DOI | MR

[18] H. Raynaud, “Sur l'enveloppe convexe des nuages de points aléatoires dans $R^{n}$. I”, J. Appl. Probab., 7 (1970), 35–48 | Zbl

[19] R. Schneider, W. Weil, Stochastic and Integral Geometry, Probability and its Applications (New York), Springer-Verlag, Berlin, 2008 | DOI | Zbl

[20] E. Sparre Andersen, “On the number of positive sums of random variables”, Skand. Aktuarietidskr., 32 (1949), 27–36 | MR

[21] E. Sparre Andersen, “On sums of symmetrically dependent random variables”, Skand. Aktuarietidskr., 36 (1953), 123–138 | MR

[22] E. Sparre Andersen, “On the fluctuations of sums of random variables. II”, Math. Scand., 2 (1954), 195–223 | MR | Zbl

[23] V. Vysotsky, D. Zaporozhets, “Convex hulls of multidimensional random walks”, Trans. Amer. Math. Soc., 370:11 (2018), 7985–8012 | DOI | MR | Zbl

[24] J. G. Wendel, “A problem in geometric probability”, Math. Scand., 11 (1962), 109–111 | DOI | MR | Zbl