New goodness-of-fit tests for the family of Rayleigh distributions, based on a special property and a characterization
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 230-243 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we construct new goodness-of-fit tests for Rayleigh distribution family with an arbitrary scale-parameter $\sigma$, based on some property and some characterization. We describe their limiting distributions, calculate local Bahadur efficiencies under close alternatives and perform asymptotic comparison of our test statistics.
@article{ZNSL_2021_505_a13,
     author = {I. A. Ragozin},
     title = {New goodness-of-fit tests for the family of {Rayleigh} distributions, based on a special property and a characterization},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {230--243},
     year = {2021},
     volume = {505},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a13/}
}
TY  - JOUR
AU  - I. A. Ragozin
TI  - New goodness-of-fit tests for the family of Rayleigh distributions, based on a special property and a characterization
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 230
EP  - 243
VL  - 505
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a13/
LA  - ru
ID  - ZNSL_2021_505_a13
ER  - 
%0 Journal Article
%A I. A. Ragozin
%T New goodness-of-fit tests for the family of Rayleigh distributions, based on a special property and a characterization
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 230-243
%V 505
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a13/
%G ru
%F ZNSL_2021_505_a13
I. A. Ragozin. New goodness-of-fit tests for the family of Rayleigh distributions, based on a special property and a characterization. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 230-243. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a13/

[1] M. M. Desu, “A characterization of the exponential distribution by order statistics”, Ann. Math. Statist., 42:2 (1971), 837–838 | DOI | Zbl

[2] V. S. Korolyuk, Yu. V. Borovskikh, Teoriya $U$-statistik, Naukova dumka, 1989

[3] Ya. Yu. Nikitin, E. V. Ponikarov, “Rough large deviation asymptotics of Chernoff type for von Mises functionals and $U$-statistics”, Proc. St. Petersburg Math. Soc., 7 (1999), 124–167

[4] Ya. Yu. Nikitin, K. Yu. Volkova, “Efficiency of exponentiality tests based on a special property of exponential distribution”, Math. Methods Statist., 25:1 (2016), 54–66 | DOI | MR | Zbl

[5] Ya. Yu. Nikitin, “Large deviations of $U$-empirical Kolmogorov–Smirnov tests, and their efficiency”, J. Nonpar. Statist., 22 (2010), 649–668 | DOI | Zbl

[6] Ya. Yu. Nikitin, Asimptoticheskaya effektivnost neparametricheskikh statisticheskikh kriteriev, Nauka, M., 1995

[7] R. R. Bahadur, Some Limit Theorems in Statistics, SIAM, Philadelphia, 1971 | Zbl

[8] R. R. Bahadur, “Stochastic comparison of tests”, Ann. Math. Statist., 31 (1960), 276–295 | DOI | MR | Zbl