Probabilistic shadowing for pseudotrajectories with decreasing errors
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 207-229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the shadowing property of pseudotrajectories with decreasing errors for a linear skew product. The probabilistic properties of finite pseudotrajectories are studied. It is shown that for pseudotrajectories with errors decreasing exponentially, the typical dependence between the length of the pseudotrajectory and the shadowing accuracy is polynomial. The proof is based on the large deviation principle and the gambler's ruin problem.
@article{ZNSL_2021_505_a12,
     author = {V. A. Priezzhev and P. A. Priezzhev and S. B. Tikhomirov},
     title = {Probabilistic shadowing for pseudotrajectories with decreasing errors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {207--229},
     year = {2021},
     volume = {505},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a12/}
}
TY  - JOUR
AU  - V. A. Priezzhev
AU  - P. A. Priezzhev
AU  - S. B. Tikhomirov
TI  - Probabilistic shadowing for pseudotrajectories with decreasing errors
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 207
EP  - 229
VL  - 505
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a12/
LA  - ru
ID  - ZNSL_2021_505_a12
ER  - 
%0 Journal Article
%A V. A. Priezzhev
%A P. A. Priezzhev
%A S. B. Tikhomirov
%T Probabilistic shadowing for pseudotrajectories with decreasing errors
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 207-229
%V 505
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a12/
%G ru
%F ZNSL_2021_505_a12
V. A. Priezzhev; P. A. Priezzhev; S. B. Tikhomirov. Probabilistic shadowing for pseudotrajectories with decreasing errors. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 207-229. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a12/

[1] K. Palmer, Shadowing in Dynamical Systems, Theory and Applications, Kluwer, Dordrecht, 2000 | Zbl

[2] S. Yu. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes Math., 1706, Springer, Berlin, 1999 | Zbl

[3] D. V. Anosov, “On a class of invariant sets of smooth dynamical systems”, Proc. 5th Int. Conf. on Nonlin. Oscill, v. 2, 1970, 39–45 | Zbl

[4] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes Math., 470, Springer, Berlin, 1975 | DOI | Zbl

[5] B. Hasselblatt, A. Katok, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995 | Zbl

[6] S. Yu. Pilyugin, Spaces of Dynamical Systems, De Gruyter Studies in Mathematical Physics, 3, De Gruyter, Berlin, 2012 | Zbl

[7] C. Robinson, “Stability theorems and hyperbolicity in dynamical systems”, Rocky Mountain J. Math., 7 (1977), 425–437 | DOI | MR | Zbl

[8] K. Sawada, “Extended f-orbits are approximated by orbits”, Nagoya Math. J., 79 (1980), 33–45 | DOI | MR | Zbl

[9] S. Tikhomirov, “Hölder Shadowing on finite intervals”, Ergodic Theory Dynam. Systems, 35:6 (2015), 2000–2016 | DOI | MR | Zbl

[10] S. Yu. Pilyugin, A. A. Rodionova, “Sakai K. Orbital and weak shadowing properties”, Discrete Contin. Dyn. Syst., 9 (2003), 287–308 | DOI | MR | Zbl

[11] K. Sakai, “Pseudo-orbit tracing property and strong transversality of diffeomorphisms of closed manifolds”, Osaka J. Math., 31 (1994), 373–386 | MR | Zbl

[12] F. Abdenur, L. Diaz, “Pseudo-orbit shadowing in the C1 topology”, Discrete Contin. Dyn. Syst. A, 17 (2007), 223–245 | DOI | MR | Zbl

[13] S. Yu. Pilyugin, S. B. Tikhomirov, “Lipschitz Shadowing implies structural stability”, Nonlinearity, 23 (2010), 2509–2515 | DOI | MR | Zbl

[14] G. Yuan, J. Yorke, “An open set of maps for which every point is absolutely nonshadowable”, Proc. Amer. Math. Soc., 128 (2000), 909–918 | DOI | MR | Zbl

[15] S. Tikhomirov, “On Absolute nonshadowability of transitive Maps”, Differential Equations and Control Processes, 2016, no. 3, 57–65 | Zbl

[16] S. Tikhomirov, “Shadowing in linear skew products”, J. Math. Sci., 209:6 (2015), 979–987 | DOI | MR | Zbl

[17] S. M. Hammel, J. A. Yorke, C. Grebogi, Do numerical orbits of chaotic dynamical processes represent true orbits?, J. of Complexity, 3 (1987), 136–145 | DOI | MR | Zbl

[18] S. M. Hammel, J. A. Yorke, C. Grebogi, “Numerical orbits of chaotic processes represent true orbits”, Bulletin of the American Mathematical Society, 19 (1988), 465–469 | DOI | Zbl

[19] G. Monakov, S. Tikhomirov, Shadowing in a linear skew product over Bernoulli shift, arXiv: 2012.08264

[20] S. Yu. Pilyugin, “Sets of dynamical systems with various limit shadowing properties”, J. Dynam. Diff. Eq., 19 (2007), 747–775 | DOI | Zbl

[21] D. Todorov, “Generalizations of analogs of theorems of Maizel and Pliss and their application in shadowing theory”, Discrete Contin. Dyn. Syst., 33:9 (2013), 4187–4205 | DOI | MR | Zbl

[22] S. R. S. Varadhan, Large deviations and applications, CBMS-NSF Regional Conference Series in Applied Mathematics, 46, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1984 | Zbl

[23] W. Feller, An introduction to probability theory and its applications, v. II, John Wiley $\$ Sons, Inc., New York–London–Sydney, 1971 | Zbl