@article{ZNSL_2021_505_a12,
author = {V. A. Priezzhev and P. A. Priezzhev and S. B. Tikhomirov},
title = {Probabilistic shadowing for pseudotrajectories with decreasing errors},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {207--229},
year = {2021},
volume = {505},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a12/}
}
TY - JOUR AU - V. A. Priezzhev AU - P. A. Priezzhev AU - S. B. Tikhomirov TI - Probabilistic shadowing for pseudotrajectories with decreasing errors JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 207 EP - 229 VL - 505 UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a12/ LA - ru ID - ZNSL_2021_505_a12 ER -
V. A. Priezzhev; P. A. Priezzhev; S. B. Tikhomirov. Probabilistic shadowing for pseudotrajectories with decreasing errors. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 207-229. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a12/
[1] K. Palmer, Shadowing in Dynamical Systems, Theory and Applications, Kluwer, Dordrecht, 2000 | Zbl
[2] S. Yu. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes Math., 1706, Springer, Berlin, 1999 | Zbl
[3] D. V. Anosov, “On a class of invariant sets of smooth dynamical systems”, Proc. 5th Int. Conf. on Nonlin. Oscill, v. 2, 1970, 39–45 | Zbl
[4] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes Math., 470, Springer, Berlin, 1975 | DOI | Zbl
[5] B. Hasselblatt, A. Katok, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995 | Zbl
[6] S. Yu. Pilyugin, Spaces of Dynamical Systems, De Gruyter Studies in Mathematical Physics, 3, De Gruyter, Berlin, 2012 | Zbl
[7] C. Robinson, “Stability theorems and hyperbolicity in dynamical systems”, Rocky Mountain J. Math., 7 (1977), 425–437 | DOI | MR | Zbl
[8] K. Sawada, “Extended f-orbits are approximated by orbits”, Nagoya Math. J., 79 (1980), 33–45 | DOI | MR | Zbl
[9] S. Tikhomirov, “Hölder Shadowing on finite intervals”, Ergodic Theory Dynam. Systems, 35:6 (2015), 2000–2016 | DOI | MR | Zbl
[10] S. Yu. Pilyugin, A. A. Rodionova, “Sakai K. Orbital and weak shadowing properties”, Discrete Contin. Dyn. Syst., 9 (2003), 287–308 | DOI | MR | Zbl
[11] K. Sakai, “Pseudo-orbit tracing property and strong transversality of diffeomorphisms of closed manifolds”, Osaka J. Math., 31 (1994), 373–386 | MR | Zbl
[12] F. Abdenur, L. Diaz, “Pseudo-orbit shadowing in the C1 topology”, Discrete Contin. Dyn. Syst. A, 17 (2007), 223–245 | DOI | MR | Zbl
[13] S. Yu. Pilyugin, S. B. Tikhomirov, “Lipschitz Shadowing implies structural stability”, Nonlinearity, 23 (2010), 2509–2515 | DOI | MR | Zbl
[14] G. Yuan, J. Yorke, “An open set of maps for which every point is absolutely nonshadowable”, Proc. Amer. Math. Soc., 128 (2000), 909–918 | DOI | MR | Zbl
[15] S. Tikhomirov, “On Absolute nonshadowability of transitive Maps”, Differential Equations and Control Processes, 2016, no. 3, 57–65 | Zbl
[16] S. Tikhomirov, “Shadowing in linear skew products”, J. Math. Sci., 209:6 (2015), 979–987 | DOI | MR | Zbl
[17] S. M. Hammel, J. A. Yorke, C. Grebogi, Do numerical orbits of chaotic dynamical processes represent true orbits?, J. of Complexity, 3 (1987), 136–145 | DOI | MR | Zbl
[18] S. M. Hammel, J. A. Yorke, C. Grebogi, “Numerical orbits of chaotic processes represent true orbits”, Bulletin of the American Mathematical Society, 19 (1988), 465–469 | DOI | Zbl
[19] G. Monakov, S. Tikhomirov, Shadowing in a linear skew product over Bernoulli shift, arXiv: 2012.08264
[20] S. Yu. Pilyugin, “Sets of dynamical systems with various limit shadowing properties”, J. Dynam. Diff. Eq., 19 (2007), 747–775 | DOI | Zbl
[21] D. Todorov, “Generalizations of analogs of theorems of Maizel and Pliss and their application in shadowing theory”, Discrete Contin. Dyn. Syst., 33:9 (2013), 4187–4205 | DOI | MR | Zbl
[22] S. R. S. Varadhan, Large deviations and applications, CBMS-NSF Regional Conference Series in Applied Mathematics, 46, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1984 | Zbl
[23] W. Feller, An introduction to probability theory and its applications, v. II, John Wiley $\$ Sons, Inc., New York–London–Sydney, 1971 | Zbl