Stable random variables with a complex index $\alpha$. The case of $|\alpha - 1/2|1/2$
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 17-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The case of $|\alpha - 1/2|<1/2$. In this paper, we construct complex-valued random variables that satisfy the usual stability condition, but for a complex parameter $\alpha$ such that $|\alpha-1/2|<1/2$. The characteristic function of the obtained random variables is found and limit theorems for sums of independent identically distributed random variables are proved. The corresponding Lévy processes and semigroups of operators corresponding to these processes are constructed.
@article{ZNSL_2021_505_a1,
     author = {I. A. Alekseev},
     title = {Stable random variables with a complex index $\alpha$. {The} case of $|\alpha - 1/2|<1/2$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--37},
     year = {2021},
     volume = {505},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a1/}
}
TY  - JOUR
AU  - I. A. Alekseev
TI  - Stable random variables with a complex index $\alpha$. The case of $|\alpha - 1/2|<1/2$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 17
EP  - 37
VL  - 505
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a1/
LA  - ru
ID  - ZNSL_2021_505_a1
ER  - 
%0 Journal Article
%A I. A. Alekseev
%T Stable random variables with a complex index $\alpha$. The case of $|\alpha - 1/2|<1/2$
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 17-37
%V 505
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a1/
%G ru
%F ZNSL_2021_505_a1
I. A. Alekseev. Stable random variables with a complex index $\alpha$. The case of $|\alpha - 1/2|<1/2$. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 17-37. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a1/

[1] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Kommutativnaya model predstavleniya gruppy tokov $SL(2,\mathbb{R})^X$, svyazannaya s unipotentnoi podgruppoi”, Funkts. analiz i ego prilozh., 17 (1983), 70–72 | Zbl

[2] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1966

[3] V. M. Zolotarev, Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983

[4] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965

[5] Dzh. Kingman, Puassonovskie protsessy, Izdatelstvo MTsNMO, M., 2007

[6] M. A. Lifshits, “Invariantnye mery, porozhdaemye sluchainymi polyami s nezavisimymi znacheniyami”, Funkts. analiz i ego pril., 19 (1985), 92–93

[7] M. V. Platonova, “Simmetrichnye $\alpha$-ustoichivye raspredeleniya s netselym $\alpha>2$ i svyazannye s nimi stokhasticheskie protsessy”, Zap. nauchn. semin. POMI, 442, 2015, 101–117

[8] N. V. Smorodina, M. M. Faddeev, “Teoremy o skhodimosti raspredelenii stokhasticheskikh integralov k znakoperemennym meram i lokalnye predelnye teoremy dlya bolshikh uklonenii”, Zap. nauchn. semin. POMI, 368, 2009, 201–228

[9] Mark M. Meerschaert, Hans-Peter Scheffler, Limit distributions for sums of independent random vectors : heavy tails in theory and practice, Wiley, New York, 2001

[10] E. Rvaceva, “On domains of attraction of multidimensional distributions”, Select. Transl. Math. Stat. Prob., 2, American Math. Soc., Providence, Rhode Island, 1962, 183–205 | MR

[11] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 2013

[12] N. V. Smorodina, M. M. Faddeev, “The Levy–Khinchin representation of the one class of signed stable measures and some its applications”, Acta applicandae mathematicae, 110 (2010), 1289–1308 | DOI | MR | Zbl