@article{ZNSL_2021_505_a1,
author = {I. A. Alekseev},
title = {Stable random variables with a complex index $\alpha$. {The} case of $|\alpha - 1/2|<1/2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {17--37},
year = {2021},
volume = {505},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a1/}
}
I. A. Alekseev. Stable random variables with a complex index $\alpha$. The case of $|\alpha - 1/2|<1/2$. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 31, Tome 505 (2021), pp. 17-37. http://geodesic.mathdoc.fr/item/ZNSL_2021_505_a1/
[1] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Kommutativnaya model predstavleniya gruppy tokov $SL(2,\mathbb{R})^X$, svyazannaya s unipotentnoi podgruppoi”, Funkts. analiz i ego prilozh., 17 (1983), 70–72 | Zbl
[2] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1966
[3] V. M. Zolotarev, Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983
[4] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965
[5] Dzh. Kingman, Puassonovskie protsessy, Izdatelstvo MTsNMO, M., 2007
[6] M. A. Lifshits, “Invariantnye mery, porozhdaemye sluchainymi polyami s nezavisimymi znacheniyami”, Funkts. analiz i ego pril., 19 (1985), 92–93
[7] M. V. Platonova, “Simmetrichnye $\alpha$-ustoichivye raspredeleniya s netselym $\alpha>2$ i svyazannye s nimi stokhasticheskie protsessy”, Zap. nauchn. semin. POMI, 442, 2015, 101–117
[8] N. V. Smorodina, M. M. Faddeev, “Teoremy o skhodimosti raspredelenii stokhasticheskikh integralov k znakoperemennym meram i lokalnye predelnye teoremy dlya bolshikh uklonenii”, Zap. nauchn. semin. POMI, 368, 2009, 201–228
[9] Mark M. Meerschaert, Hans-Peter Scheffler, Limit distributions for sums of independent random vectors : heavy tails in theory and practice, Wiley, New York, 2001
[10] E. Rvaceva, “On domains of attraction of multidimensional distributions”, Select. Transl. Math. Stat. Prob., 2, American Math. Soc., Providence, Rhode Island, 1962, 183–205 | MR
[11] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 2013
[12] N. V. Smorodina, M. M. Faddeev, “The Levy–Khinchin representation of the one class of signed stable measures and some its applications”, Acta applicandae mathematicae, 110 (2010), 1289–1308 | DOI | MR | Zbl