Computation of Jordan vector semilattices of a multiparameter polynomial matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 172-180
Cet article a éte moissonné depuis la source Math-Net.Ru
A modification of the algorithm for computing the Jordan vector semilattices corresponding to a multiple point of the spectrum of a multiparameter polynomial matrix is suggested. The modification is based on using quasiresultant matrices and allows one to reduce the computational costs significantly. A numerical example illustrating application of the original algorithm and its modification is considered.
@article{ZNSL_2021_504_a9,
author = {V. B. Khazanov},
title = {Computation of {Jordan} vector semilattices of a multiparameter polynomial matrix},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {172--180},
year = {2021},
volume = {504},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a9/}
}
V. B. Khazanov. Computation of Jordan vector semilattices of a multiparameter polynomial matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 172-180. http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a9/
[1] V. B. Khazanov, “Postroenie minimalnogo bazisa pravogo nul-prostranstva singulyarnoi mnogoparametricheskoi polinomialnoi matritsy”, Zap. nauchn. semin. POMI , 482, 2019, 272–287
[2] V. B. Khazanov, “Vychislenie zhordanovykh polureshetok vektorov mnogoparametricheskoi polinomialnoi matritsy”, Zap. nauchn. semin. POMI , 496, 2020, 182–194
[3] V. A. Churkin, Zhordanova klassifikatsiya konechnomernykh lineinykh operatorov, Metodicheskie ukazaniya k novomu metodu postroeniya zhordanovoi bazy dlya lineinogo operatora, Izd-vo NGU, Novosibirsk, 1991