@article{ZNSL_2021_504_a8,
author = {O. V. Markova and D. Yu. Novochadov},
title = {Generating systems of the full matrix algebra that contain nonderogatory matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {157--171},
year = {2021},
volume = {504},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a8/}
}
TY - JOUR AU - O. V. Markova AU - D. Yu. Novochadov TI - Generating systems of the full matrix algebra that contain nonderogatory matrices JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 157 EP - 171 VL - 504 UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a8/ LA - ru ID - ZNSL_2021_504_a8 ER -
O. V. Markova; D. Yu. Novochadov. Generating systems of the full matrix algebra that contain nonderogatory matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 157-171. http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a8/
[1] Yu.A. Al'pin, Kh.D. Ikramov, “Reducibility theorems for pairs of matrices as rational criteria”, Linear Algebra Appl., 313 (2000), 155–161 | DOI | MR | Zbl
[2] G. Dolinar, A. Guterman, B. Kuzma, P. Oblak, “Extremal matrix centralizers”, Linear Algebra Appl., 438:7 (2013), 2904–2910 | DOI | MR | Zbl
[3] M. Elyze, A. Guterman, R. Morrison, K. Sivic, “Higher-distance commuting varieties”, Linear Multilinear Algebra, 2020 | DOI
[4] A. Guterman, T. Laffey, O. Markova, H. Šmigoc, “A resolution of Paz's conjecture in the presence of a nonderogatory matrix”, Linear Algebra Appl., 543 (2018), 234–250 | DOI | MR | Zbl
[5] A.E. Guterman, O.V. Markova, V. Mehrmann, “Length realizability for pairs of quasi-commuting matrices”, Linear Algebra Appl., 568 (2019), 135–154 | DOI | MR | Zbl
[6] R. Kippenhahn, “Über der Wertevorrat einer Matrix”, Math. Nachr., 6 (1951–1952), 193–228 | DOI | MR | Zbl
[7] T. Laffey, “A note on matrix subalgebras containing a full Jordan block”, Linear Algebra Appl., 37 (1981), 187–189 | DOI | MR | Zbl
[8] T. Laffey, “A counterexample to Kippenhahn's conjecture on Hermitian pencils”, Linear Algebra Appl., 51 (1983), 179–183 | DOI | MR
[9] T. Laffey, “A structure theorem for some matrix algebras”, Linear Algebra Appl., 162–164 (1992), 205–215 | DOI | MR | Zbl
[10] B. Lawrence, “Burnside graphs, algebras generated by sets of matrices, and the Kippenhahn conjecture”, Linear Multilinear Algebra, 67 (2019), 51–69 | DOI | MR | Zbl
[11] V. Lomonosov, P. Rosenthal, “The simplest proof of Burnside's theorem on matrix algebras”, Linear Algebra Appl., 383 (2004), 45–47 | DOI | MR | Zbl
[12] W.E. Longstaff, “On minimal sets of $(0,1)$-matrices whose pairwise products form a basis for $M_n(\mathbb{F})$”, Bull. Austral. Math. Soc., 98:3 (2018), 402–413 | DOI | Zbl
[13] W.E. Longstaff, “Irreducible families of complex matrices containing a rank-one matrix”, Bull. Austral. Math. Soc., 102:2 (2020), 226–236 | DOI | Zbl
[14] W.E. Longstaff, P. Rosenthal, “On the lengths of irreducible pairs of complex matrices”, Proc. Amer. Math. Soc., 139:11 (2011), 3769–3777 | DOI | MR | Zbl
[15] O.V. Markova, “Funktsiya dliny i matrichnye algebry”, Fund. prikl. matem., 17:6 (2012), 65–173
[16] A. Paz, “An application of the Cayley—Hamilton theorem to matrix polynomials in several variables”, Linear Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl
[17] Y. Shitov, “An improved bound for the lengths of matrix algebras”, Algebra Number Theory, 13:6 (2019), 1501–1507 | DOI | MR | Zbl
[18] W. Waterhouse, “A conjectured property of Hermitian pencils”, Linear Algebra Appl., 51 (1983), 173–177 | DOI | MR | Zbl