Generating systems of the full matrix algebra that contain nonderogatory matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 157-171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\mathcal{A}$ be an algebra over a field $\mathbb{F}$ generated by a set of matrices $\mathcal{S}$. The paper considers algorithmic aspects of checking whether $\mathcal{A}$ coincides with the full matrix algebra. Laffey has shown that for $\mathbb{F} = \mathbb{C}$, under the assumption that $\mathcal{S}$ contains a Jordan matrix from a certain class, there is a fast method for checking whether $\mathcal{A}$ possesses nontrivial invariant subspaces and, consequently, coincides with the full algebra by Burnside's theorem. This paper extends the class to the largest subclass of Jordan matrices on which the algorithm works correctly. Examples demonstrating the different behavior of other matrix systems are provided.
@article{ZNSL_2021_504_a8,
     author = {O. V. Markova and D. Yu. Novochadov},
     title = {Generating systems of the full matrix algebra that contain nonderogatory matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--171},
     year = {2021},
     volume = {504},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a8/}
}
TY  - JOUR
AU  - O. V. Markova
AU  - D. Yu. Novochadov
TI  - Generating systems of the full matrix algebra that contain nonderogatory matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 157
EP  - 171
VL  - 504
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a8/
LA  - ru
ID  - ZNSL_2021_504_a8
ER  - 
%0 Journal Article
%A O. V. Markova
%A D. Yu. Novochadov
%T Generating systems of the full matrix algebra that contain nonderogatory matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 157-171
%V 504
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a8/
%G ru
%F ZNSL_2021_504_a8
O. V. Markova; D. Yu. Novochadov. Generating systems of the full matrix algebra that contain nonderogatory matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 157-171. http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a8/

[1] Yu.A. Al'pin, Kh.D. Ikramov, “Reducibility theorems for pairs of matrices as rational criteria”, Linear Algebra Appl., 313 (2000), 155–161 | DOI | MR | Zbl

[2] G. Dolinar, A. Guterman, B. Kuzma, P. Oblak, “Extremal matrix centralizers”, Linear Algebra Appl., 438:7 (2013), 2904–2910 | DOI | MR | Zbl

[3] M. Elyze, A. Guterman, R. Morrison, K. Sivic, “Higher-distance commuting varieties”, Linear Multilinear Algebra, 2020 | DOI

[4] A. Guterman, T. Laffey, O. Markova, H. Šmigoc, “A resolution of Paz's conjecture in the presence of a nonderogatory matrix”, Linear Algebra Appl., 543 (2018), 234–250 | DOI | MR | Zbl

[5] A.E. Guterman, O.V. Markova, V. Mehrmann, “Length realizability for pairs of quasi-commuting matrices”, Linear Algebra Appl., 568 (2019), 135–154 | DOI | MR | Zbl

[6] R. Kippenhahn, “Über der Wertevorrat einer Matrix”, Math. Nachr., 6 (1951–1952), 193–228 | DOI | MR | Zbl

[7] T. Laffey, “A note on matrix subalgebras containing a full Jordan block”, Linear Algebra Appl., 37 (1981), 187–189 | DOI | MR | Zbl

[8] T. Laffey, “A counterexample to Kippenhahn's conjecture on Hermitian pencils”, Linear Algebra Appl., 51 (1983), 179–183 | DOI | MR

[9] T. Laffey, “A structure theorem for some matrix algebras”, Linear Algebra Appl., 162–164 (1992), 205–215 | DOI | MR | Zbl

[10] B. Lawrence, “Burnside graphs, algebras generated by sets of matrices, and the Kippenhahn conjecture”, Linear Multilinear Algebra, 67 (2019), 51–69 | DOI | MR | Zbl

[11] V. Lomonosov, P. Rosenthal, “The simplest proof of Burnside's theorem on matrix algebras”, Linear Algebra Appl., 383 (2004), 45–47 | DOI | MR | Zbl

[12] W.E. Longstaff, “On minimal sets of $(0,1)$-matrices whose pairwise products form a basis for $M_n(\mathbb{F})$”, Bull. Austral. Math. Soc., 98:3 (2018), 402–413 | DOI | Zbl

[13] W.E. Longstaff, “Irreducible families of complex matrices containing a rank-one matrix”, Bull. Austral. Math. Soc., 102:2 (2020), 226–236 | DOI | Zbl

[14] W.E. Longstaff, P. Rosenthal, “On the lengths of irreducible pairs of complex matrices”, Proc. Amer. Math. Soc., 139:11 (2011), 3769–3777 | DOI | MR | Zbl

[15] O.V. Markova, “Funktsiya dliny i matrichnye algebry”, Fund. prikl. matem., 17:6 (2012), 65–173

[16] A. Paz, “An application of the Cayley—Hamilton theorem to matrix polynomials in several variables”, Linear Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl

[17] Y. Shitov, “An improved bound for the lengths of matrix algebras”, Algebra Number Theory, 13:6 (2019), 1501–1507 | DOI | MR | Zbl

[18] W. Waterhouse, “A conjectured property of Hermitian pencils”, Linear Algebra Appl., 51 (1983), 173–177 | DOI | MR | Zbl