Generating systems of the full matrix algebra that contain nonderogatory matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 157-171
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathcal{A}$ be an algebra over a field $\mathbb{F}$ generated by a set of matrices $\mathcal{S}$. The paper considers algorithmic aspects of checking whether $\mathcal{A}$ coincides with the full matrix algebra. Laffey has shown that for $\mathbb{F} = \mathbb{C}$, under the assumption that $\mathcal{S}$ contains a Jordan matrix from a certain class, there is a fast method for checking whether $\mathcal{A}$ possesses nontrivial invariant subspaces and, consequently, coincides with the full algebra by Burnside's theorem. This paper extends the class to the largest subclass of Jordan matrices on which the algorithm works correctly. Examples demonstrating the different behavior of other matrix systems are provided.
@article{ZNSL_2021_504_a8,
author = {O. V. Markova and D. Yu. Novochadov},
title = {Generating systems of the full matrix algebra that contain nonderogatory matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {157--171},
publisher = {mathdoc},
volume = {504},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a8/}
}
TY - JOUR AU - O. V. Markova AU - D. Yu. Novochadov TI - Generating systems of the full matrix algebra that contain nonderogatory matrices JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 157 EP - 171 VL - 504 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a8/ LA - ru ID - ZNSL_2021_504_a8 ER -
O. V. Markova; D. Yu. Novochadov. Generating systems of the full matrix algebra that contain nonderogatory matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 157-171. http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a8/