@article{ZNSL_2021_504_a7,
author = {E. K. Kulikov and A. A. Makarov},
title = {Construction of approximation functionals for minimal splines},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {136--156},
year = {2021},
volume = {504},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a7/}
}
E. K. Kulikov; A. A. Makarov. Construction of approximation functionals for minimal splines. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 136-156. http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a7/
[1] Yu. S. Volkov, Yu. N. Subbotin, “50 let zadache Shenberga o skhodimosti splain-interpolyatsii”, Tr. IMM UrO RAN, 20, no. 1, 2014, 52–67
[2] Yu. S. Volkov, V. T. Shevaldin, “Usloviya formosokhraneniya pri interpolyatsii splainami vtoroi stepeni po Subbotinu i po Marsdenu”, Tr. IMM UrO RAN, 18, no. 4, 2012, 145–152
[3] S. B. Stechkin, Yu. N. Subbotin, Splainy v vychislitelnoi matematike, M., 1976
[4] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, M., 1980
[5] L. L. Schumaker, Spline functions: basic theory, John Wiley and Sons, Inc., New York, 1981 | Zbl
[6] Yu. K. Demyanovich, Lokalnaya approksimatsiya na mnogoobrazii i minimalnye splainy, Izd-vo S.-Peterb. un-ta, 1994
[7] C. de Boor, A Practical Guide to Splines, revised edition, Springer-Verlag, New York, 2001 | Zbl
[8] B. I. Kvasov, Metody izogeometricheskoi approksimatsii splainami, Fizmatlit, M., 2006
[9] I. G. Burova, Yu. K. Demyanovich, Minimalnye splainy i ikh prilozheniya, Izd-vo S.-Peterb. un-ta, 2010
[10] A. I. Grebennikov, Metod splainov i reshenie nekorrektnykh zadach v teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1983
[11] T. Lyche, L. L. Shumaker, “Quasi-interpolants based on trigonometric splines”, J. Approx. Theor., 95 (1998), 280–309 | DOI | Zbl
[12] P. Sablonniere, “Quadratic spline quasi-interpolants on bounded domains of ${\mathbb R}^{d}$, $d = 1, 2, 3$”, Rend. Sem. Mat., 61:3 (2003), 229–246 | MR | Zbl
[13] T. Lyche, K. Mörken, Spline methods, Draft Centre of Mathematics for Applications, University of Oslo, 2005
[14] P. Constantini, C. Manni, F. Pelosi, M. Lucia Sampoli, “Quasi-interpolation in isogeometric analysis based on generalized $B$-splines”, Computer Aided Geom. Design, 27:8 (2010), 655–668
[15] A. A. Makarov, “Biortogonalnye sistemy funktsionalov i matritsy dekompozitsii dlya minimalnykh splainov”, Ukr. mat. visn., 9:2 (2012), 219–236 | Zbl
[16] Y. Jiang, Y. Xu, “B-spline Quasi-interpolation on Sparse Grids”, J. Complexity, 27:5 (2014), 466–488 | DOI
[17] W. Gao, Z. Wu, “A quasi-interpolation scheme for periodic data based on multiquadric trigonometric $B$-splines”, J. Comput. Appl. Math., 271 (2014), 20–30 | DOI | MR | Zbl
[18] M. Li, L. Chen, Q. Ma, “A meshfree quasi-interpolation method for solving burgers' equation”, Comput. Meth. Eng. Sci., 2014:3 (2014), 1–8
[19] R.- G. Yu, R.- H. Wang, C.- G. Zhu, “A numerical method for solving KdV equation with multilevel B-spline quasi-interpolation”, Appl. Anal., 92:8 (2013), 1682–1690 | DOI | MR | Zbl
[20] C. Dagnino, S. Remogna, P. Sablonniere, “On the solution of Fredholm integral equations based on spline quasi-interpolating projectors”, BIT, 54:4 (2014), 979–1008 | DOI | MR | Zbl
[21] M. Derakhshan, M. Zarebnia, “On the numerical treatment and analysis of two-dimensional Fredholm integral equations using quasi-interpolant”, Comput. Appl. Math., 39:106 (2020) | MR | Zbl
[22] P. Sablonniere, D. Shibih, T. Mohamed, “Numerical integration based on bivariate quadratic spline quasi-interpolants on Powell–Sabin partitions”, BIT, 53:1 (2013), 145 ; 175–192 | DOI | Zbl
[23] L. Lu, “On polynomial approximation of circular arcs and helices”, Comput. Math. Appl., 63 (2012), 1192–1196 | DOI | MR | Zbl
[24] G. Jaklič, “Uniform approximation of a circle by a parametric polynomial curve”, Computer Aided Geom. Design, 41 (2016), 36–46 | DOI | MR | Zbl
[25] A. Rababah, “The best uniform cubic approximation of circular arcs with high accuracy”, Commun. Math. Appl., 7:1 (2016), 37–46 | MR
[26] C. Apprich, A. Dietrich, K. Höllig, E. Nava-Yazdani, “Cubic spline approximation of a circle with maximal smoothness and accuracy”, Computer Aided Geom. Design, 56 (2017), 1–3 | DOI | MR | Zbl
[27] A. A. Makarov, “An example of circular arc approximation by quadratic minimal splines”, Poincare J. Anal. Appl., 2018:2 (2018), 103–107 | Zbl
[28] Yu. K. Demyanovich, “Gladkost prostranstv splainov i vspleskovye razlozheniya”, Dokl. RAN, 401:4 (2005), 1–4
[29] Yu. K. Demyanovich, A. A. Makarov, “Neobkhodimye i dostatochnye usloviya neotritsatelnosti koordinatnykh trigonometricheskikh splainov vtorogo poryadka”, Vestn. S.-Peterb. un-ta. Ser. 1, 4(62):1 (2017), 9–16
[30] O. Kosogorov, A. Makarov, “On some piecewise quadratic spline functions”, Lect. Notes Comput. Sci., 10187, 2017, 448–455 | DOI | MR | Zbl
[31] A. A. Makarov, “O postroenii splainov maksimalnoi gladkosti”, Probl. matem. anal., 60 (2011), 25–38 | Zbl
[32] A. A. Makarov, “O dvoistvennykh funktsionalakh k minimalnym splainam”, Zap. nauchn. semin. POMI, 453, 2016, 198–218
[33] E. K. Kulikov, A. A. Makarov, “On de Boor–Fix type functionals for minimal splines”, Topics Class. Modern Anal., Applied and Numerical Harmonic Analysis, 2019, 211–225 | DOI
[34] E. K. Kulikov, A. A. Makarov, “Ob approksimatsii giperbolicheskimi splainami”, Zap. nauchn. semin. POMI, 472, 2018, 179–194
[35] E. K. Kulikov, A. A. Makarov, “O priblizhennom reshenii odnoi singulyarno vozmuschennoi kraevoi zadachi”, Diff. ur. prots. upr., 2020, no. 1, 91–102 | Zbl
[36] E. Kulikov, A. Makarov, “On biorthogonal approximation of solutions of some boundary value problems on Shishkin mesh”, AIP Conference Proceedings, 2302 (2020), 110005 | DOI
[37] E. K. Kulikov, A. A. Makarov, “O kvadratichnykh minimalnykh splainakh s kratnymi uzlami”, Zap. nauchn. semin. POMI, 482, 2019, 220–230