@article{ZNSL_2021_504_a6,
author = {N. A. Kolegov and O. V. Markova},
title = {The lengths of matrix incidence algebras over small finite fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {102--135},
year = {2021},
volume = {504},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a6/}
}
N. A. Kolegov; O. V. Markova. The lengths of matrix incidence algebras over small finite fields. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 102-135. http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a6/
[1] R. Brusamarello, E. Z. Fornaroli, E. A. Santulo Jr., “Classification of involutions on finitary incidence algebras”, Int. J. Algebra Comput., 24:8 (2014), 1085–1098 | DOI | MR | Zbl
[2] A. E. Guterman, O. V. Markova, V. Mehrmann, “Lengths of quasi-commutative pairs of matrices”, Linear Algebra Appl., 498 (2016), 450–470 | DOI | MR | Zbl
[3] A. E. Guterman, T. J. Laffey, O. V. Markova, H. Šmigoc, “A resolution of Paz's conjecture in the presence of a nonderogatory matrix”, Linear Algebra Appl., 543 (2018), 234–250 | DOI | MR | Zbl
[4] I. Kaygorodov, M. Khrypchenko, F. Wei, “Higher derivations of finitary incidence algebras”, Algebr. Represent. Theory, 22 (2019), 1331–1341 | DOI | MR | Zbl
[5] N. A. Kolegov, “On real algebras generated by positive and nonnegative matrices”, Linear Algebra Appl., 611 (2021), 46–65 | DOI | MR | Zbl
[6] N. A. Kolegov, On the lengths of matrix incidence algebras with radicals of square zero, Preprint
[7] N. A. Kolegov, O. V. Markova, “Kommutativnost matrits s tochnostyu do matrichnogo mnozhitelya”, Zap. nauchn. semin. POMI, 482 (2019), 151–168
[8] N. A. Kolegov, O. V. Markova, “Sistemy porozhdayuschikh matrichnykh algebr intsidentnosti nad konechnymi polyami”, Zap. nauchn. semin. POMI, 472 (2018), 120–144
[9] V. Lomonosov, P. Rosenthal, “The simplest proof of Burnside's theorem on matrix algebras”, Linear Algebra Appl., 383 (2004), 45–47 | DOI | MR | Zbl
[10] W. E. Longstaff, “On minimal sets of $(0,1)$-matrices whose pairwise products form a basis for $M_n(\mathbb{F})$”, Bull. Austral. Math. Soc., 98:3 (2018), 402–413 | DOI | Zbl
[11] W. E. Longstaff, “Irreducible families of complex matrices containing a rank-one matrix”, Bull. Austral. Math. Soc., 102:2 (2020), 226–236 | DOI | Zbl
[12] W. E. Longstaff, P. Rosenthal, “Generators of matrix incidence algebras”, Austral. J. Combin., 22 (2000), 117–121 | MR | Zbl
[13] W. E. Longstaff, P. Rosenthal, “On the lengths of irreducible pairs of complex matrices”, Proc. Amer. Math. Soc., 139:11 (2011), 3769–3777 | DOI | MR | Zbl
[14] O. V. Markova, “O dline algebry verkhnetreugolnykh matrits”, UMN, 60:5 (2005), 177–178 | MR | Zbl
[15] O. V. Markova, “Vychislenie dlin matrichnykh podalgebr spetsialnogo vida”, Fund. prikl. matem., 13:4 (2007), 165–197
[16] O. V. Markova, “Verkhnyaya otsenka dliny kommutativnykh algebr”, Mat. sb., 200:12 (2009), 41–62 | Zbl
[17] O. V. Markova, “O nekotorykh svoistvakh funktsii dliny”, Matem. zametki, 87:1 (2010), 83–91 | MR | Zbl
[18] O. V. Markova, “Funktsiya dliny i matrichnye algebry”, Fund. prikl. matem., 17:6 (2012), 65–173
[19] C. J. Pappacena, “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl
[20] A. Paz, “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl
[21] R. Pirs, Assotsiativnye algebry, Mir, 1986
[22] G.-C. Rota, “On the foundations of combinatorial theory, I. Theory of Möbius functions”, Z. Wahrscheinlichkeitsrechnung, 2 (1964), 340–368 | DOI | Zbl
[23] Ya. Shitov, “An improved bound for the lengths of matrix algebras”, Algebra Number Theory, 13:6 (2019), 1501–1507 | DOI | MR | Zbl
[24] E. Spiegel, C. J. O'Donnel, Incidence Algebras, Marcel Dekker, 1997 | Zbl