Further block generalizations of Nekrasov matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 70-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper continues the study of block generalizations of Nekrasov matrices and introduces two new classes of the so-called $\widetilde{\mathrm{G}}\mathrm{N}$ and $\mathrm{BJN}$ matrices and compares them with the previously introduced class of $\mathrm{GN}$ matrices. Different properties of $\widetilde{\mathrm{G}}\mathrm{N}$ and $\mathrm{BJN}$ matrices are established. In particular, it is proved that the classes $\{\widetilde{\mathrm{G}}\mathrm{N}\}$ and $\{\mathrm{BJN}\}$ are closed with respect to Schur complements and monotone with respect to block partitioning. Also upper bounds for the norms of inverses $\|A^{-1}\|_\infty$ of $\mathrm{GN}$, $\widetilde{\mathrm{G}}\mathrm{N}$, and $\mathrm{BJN}$ matrices $A$ are considered. General results obtained are specialized to the case of block two-by-two matrices with scalar first diagonal block.
@article{ZNSL_2021_504_a5,
     author = {L. Yu. Kolotilina},
     title = {Further block generalizations of {Nekrasov} matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {70--101},
     year = {2021},
     volume = {504},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a5/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Further block generalizations of Nekrasov matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 70
EP  - 101
VL  - 504
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a5/
LA  - ru
ID  - ZNSL_2021_504_a5
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Further block generalizations of Nekrasov matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 70-101
%V 504
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a5/
%G ru
%F ZNSL_2021_504_a5
L. Yu. Kolotilina. Further block generalizations of Nekrasov matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 70-101. http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a5/

[1] V. V. Gudkov, “Ob odnom priznake neosobennosti matrits”, Latv. matem. ezhegodnik, Riga, 1966, 385–390 | Zbl

[2] L. Yu. Kolotilina, “Otsenki beskonechnoi normy obratnykh k matritsam Nekrasova”, Zap. nauchn. semin. POMI, 419, 2013, 111–120

[3] L. Yu. Kolotilina, “Otsenki obratnykh dlya obobschennykh matrits Nekrasova”, Zap. nauchn. semin. POMI, 428, 2014, 182–195

[4] L. Yu. Kolotilina, “Otsenki obratnykh v norme $l_\infty$ dlya nekotorykh blochnykh matrits”, Zap. nauchn. semin. POMI, 439, 2015, 145–158

[5] L. Yu. Kolotilina, “Matritsy nekrasovskogo tipa i otsenki dlya ikh obratnykh”, Zap. nauchn. semin. POMI, 482, 2019, 169–183

[6] L. Yu. Kolotilina, “Nekotorye novye klassy nevyrozhdennykh matrits i verkhnie otsenki dlya ikh obratnykh”, Zap. nauchn. semin. POMI, 482, 2019, 184–200

[7] L. Yu. Kolotilina, “Ob odnom blochnom obobschenii matrits Nekrasova”, Zap. nauchn. semin. POMI, 496, 2020, 138–155

[8] R. Memke, P. A. Nekrasov', “Reshenie lineinoi sistemy uravnenii posredstvom' posledovatelnykh' priblizhenii”, Matem. sb., 16 (1892), 437–459

[9] J. H. Ahlberg, E. N. Nilson, “Convergence properties of the spline fit”, J. Soc. Ind. Appl. Math., 11 (1963), 95–104 | DOI | Zbl

[10] L. Cvetković, P.-F. Dai, K. Doroslovac̆ki, Y.-T. Li, “Infinity norm bounds for the inverse of Nekrasov matrices”, Appl. Math. Comput., 219 (2013), 5020–5024 | MR | Zbl

[11] L. Cvetković, K. Doroslovac̆ki, “Max norm estimation for the inverse of block matrices”, Appl. Math. Comput., 242 (2014), 694–706 | MR | Zbl

[12] L. Cvetković, V. Kostić, K. Doroslovac̆ki, “Max-norm bounds for the inverse of $S$-Nekrasov matrices”, Appl. Math. Comput., 218 (2012), 9498–9503 | MR | Zbl

[13] L. Cvetković, V. Kostić, M. Nedović, “Generalizations of Nekrasov matrices and applications”, Open Math., 13 (2015), 96–105 | MR | Zbl

[14] L. Cvetković, V. Kostić, S. Raus̆ki, “A new subclass of $H$-matrices”, Appl. Math. Comput., 208 (2009), 206–210 | MR | Zbl

[15] Kh. D. Ikramov, M. Yu. Ibragimov, “The Nekrasov property is hereditary for Gaussian elimination”, ZAMM, 77 (1997), 394–396 | DOI | Zbl

[16] A. Ostrowski, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR

[17] F. Robert, “Blocs-H-matrices et convergence des méthodes itérative”, Linear Algebra Appl., 2 (1969), 223–265 | DOI | MR | Zbl

[18] J. M. Varah, “A lower bound for the smallest singular value of a matrix”, Linear Algebra Appl., 11 (1975), 3–5 | DOI | MR | Zbl

[19] Y. Wang, L. Gao, “An improvement of the infinity norm bound for the inverse of $\{P_1,P_2\}$-Nekrasov matrices”, J. Ineq. Appl., 177 (2019)