Further block generalizations of Nekrasov matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 70-101

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper continues the study of block generalizations of Nekrasov matrices and introduces two new classes of the so-called $\widetilde{\mathrm{G}}\mathrm{N}$ and $\mathrm{BJN}$ matrices and compares them with the previously introduced class of $\mathrm{GN}$ matrices. Different properties of $\widetilde{\mathrm{G}}\mathrm{N}$ and $\mathrm{BJN}$ matrices are established. In particular, it is proved that the classes $\{\widetilde{\mathrm{G}}\mathrm{N}\}$ and $\{\mathrm{BJN}\}$ are closed with respect to Schur complements and monotone with respect to block partitioning. Also upper bounds for the norms of inverses $\|A^{-1}\|_\infty$ of $\mathrm{GN}$, $\widetilde{\mathrm{G}}\mathrm{N}$, and $\mathrm{BJN}$ matrices $A$ are considered. General results obtained are specialized to the case of block two-by-two matrices with scalar first diagonal block.
@article{ZNSL_2021_504_a5,
     author = {L. Yu. Kolotilina},
     title = {Further block generalizations of {Nekrasov} matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {70--101},
     publisher = {mathdoc},
     volume = {504},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a5/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Further block generalizations of Nekrasov matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 70
EP  - 101
VL  - 504
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a5/
LA  - ru
ID  - ZNSL_2021_504_a5
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Further block generalizations of Nekrasov matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 70-101
%V 504
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a5/
%G ru
%F ZNSL_2021_504_a5
L. Yu. Kolotilina. Further block generalizations of Nekrasov matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 70-101. http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a5/