Symplectic eigenvalues and singular values of symmetric matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 61-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Williamson's theorem on the symplectic eigenvalues of symmetric positive definite matrices is interpreted in terms of special operators of the real symplectic space and their spectra. A relation connecting the conventional and symplectic eigenvalues of a given matrix is derived.
@article{ZNSL_2021_504_a4,
     author = {Kh. D. Ikramov and A. M. Nazari},
     title = {Symplectic eigenvalues and singular values of symmetric matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {61--69},
     year = {2021},
     volume = {504},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a4/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
AU  - A. M. Nazari
TI  - Symplectic eigenvalues and singular values of symmetric matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 61
EP  - 69
VL  - 504
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a4/
LA  - ru
ID  - ZNSL_2021_504_a4
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%A A. M. Nazari
%T Symplectic eigenvalues and singular values of symmetric matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 61-69
%V 504
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a4/
%G ru
%F ZNSL_2021_504_a4
Kh. D. Ikramov; A. M. Nazari. Symplectic eigenvalues and singular values of symmetric matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 61-69. http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a4/

[1] J. Williamson, “On the algebraic problem concerning the normal form of linear dynamical systems”, Amer. J. Math., 58:1 (1936), 141–163 | DOI | MR

[2] Kh. D. Ikramov, Kh. Fassbender, “O proizvedenii dvukh kosogamiltonovykh ili dvukh kososimmetrichnykh matrits”, Zap. nauchn. semin. POMI, 359, 2008, 45–51

[3] Kh. D. Ikpamov, “O singulyarnykh chislakh i polyarnom razlozhenii operatora v bilineino metricheskom prostranstve”, Zh. vychisl. matem. i matem. fiz., 28:1 (1988), 127–129 | MR