Special congruences of symmetric and Hermitian matrices and their invariants
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 54-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $V_n$ be the arithmetic space of dimension $n$, and let the inner product be introduced in $V_n$ using a symmetric or a skew-symmetric involution $M$. In the resulting indefinite metric space, one can define the classes of special matrices playing the parts of symmetric, skew-symmetric, and orthogonal operators. We say that such matrices are $M$-symmetric, $M$-skew-symmetric, and $M$-orthogonal, respectively. The invariants of $M$-orthogonal congruences performed with $M$-symmetric and $M$-skew-symmetric matrices are indicated. A Hermitian counterpart of these constructions is also discussed.
@article{ZNSL_2021_504_a3,
     author = {Kh. D. Ikramov},
     title = {Special congruences of symmetric and {Hermitian} matrices and their invariants},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--60},
     year = {2021},
     volume = {504},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a3/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Special congruences of symmetric and Hermitian matrices and their invariants
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 54
EP  - 60
VL  - 504
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a3/
LA  - ru
ID  - ZNSL_2021_504_a3
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Special congruences of symmetric and Hermitian matrices and their invariants
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 54-60
%V 504
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a3/
%G ru
%F ZNSL_2021_504_a3
Kh. D. Ikramov. Special congruences of symmetric and Hermitian matrices and their invariants. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 54-60. http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a3/

[1] J. Williamson, “On the algebraic problem concerning the normal form of linear dynamical systems”, Amer. J. Math., 58:1 (1936), 141–163 | DOI | MR