On matrices with pairwise orthogonal rows and columns
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 47-53
Voir la notice du chapitre de livre
We discuss possible forms of square matrices whose rows are pairwise orthogonal and the same is true of their columns. This discussion is applied to the problem of conditions under which a nonsingular binormal matrix is unitoid. A square matrix $A$ is said to be binormal if the matrices $AA^*$ and $A^*A$ commute. A square matrix is said to be unitoid if it can be brought to diagonal form by a (Hermitian) congruence.
@article{ZNSL_2021_504_a2,
author = {Kh. D. Ikramov},
title = {On matrices with pairwise orthogonal rows and columns},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {47--53},
year = {2021},
volume = {504},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a2/}
}
Kh. D. Ikramov. On matrices with pairwise orthogonal rows and columns. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 47-53. http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a2/
[1] R. A. Horn, C. R. Johnson, Matrix Analysis, Second edition, Cambridge University Press, Cambridge, 2013 | Zbl