On matrices with pairwise orthogonal rows and columns
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 47-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We discuss possible forms of square matrices whose rows are pairwise orthogonal and the same is true of their columns. This discussion is applied to the problem of conditions under which a nonsingular binormal matrix is unitoid. A square matrix $A$ is said to be binormal if the matrices $AA^*$ and $A^*A$ commute. A square matrix is said to be unitoid if it can be brought to diagonal form by a (Hermitian) congruence.
@article{ZNSL_2021_504_a2,
     author = {Kh. D. Ikramov},
     title = {On matrices with pairwise orthogonal rows and columns},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {47--53},
     year = {2021},
     volume = {504},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a2/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - On matrices with pairwise orthogonal rows and columns
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 47
EP  - 53
VL  - 504
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a2/
LA  - ru
ID  - ZNSL_2021_504_a2
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T On matrices with pairwise orthogonal rows and columns
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 47-53
%V 504
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a2/
%G ru
%F ZNSL_2021_504_a2
Kh. D. Ikramov. On matrices with pairwise orthogonal rows and columns. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 47-53. http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a2/

[1] R. A. Horn, C. R. Johnson, Matrix Analysis, Second edition, Cambridge University Press, Cambridge, 2013 | Zbl