On matrices with pairwise orthogonal rows and columns
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 47-53

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss possible forms of square matrices whose rows are pairwise orthogonal and the same is true of their columns. This discussion is applied to the problem of conditions under which a nonsingular binormal matrix is unitoid. A square matrix $A$ is said to be binormal if the matrices $AA^*$ and $A^*A$ commute. A square matrix is said to be unitoid if it can be brought to diagonal form by a (Hermitian) congruence.
@article{ZNSL_2021_504_a2,
     author = {Kh. D. Ikramov},
     title = {On matrices with pairwise orthogonal rows and columns},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {47--53},
     publisher = {mathdoc},
     volume = {504},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a2/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - On matrices with pairwise orthogonal rows and columns
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 47
EP  - 53
VL  - 504
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a2/
LA  - ru
ID  - ZNSL_2021_504_a2
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T On matrices with pairwise orthogonal rows and columns
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 47-53
%V 504
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a2/
%G ru
%F ZNSL_2021_504_a2
Kh. D. Ikramov. On matrices with pairwise orthogonal rows and columns. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 47-53. http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a2/