On matrices with pairwise orthogonal rows and columns
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 47-53
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss possible forms of square matrices whose rows are pairwise orthogonal and the same is true of their columns. This discussion is applied to the problem of conditions under which a nonsingular binormal matrix is unitoid. A square matrix $A$ is said to be binormal if the matrices $AA^*$ and $A^*A$ commute. A square matrix is said to be unitoid if it can be brought to diagonal form by a (Hermitian) congruence.
@article{ZNSL_2021_504_a2,
author = {Kh. D. Ikramov},
title = {On matrices with pairwise orthogonal rows and columns},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {47--53},
publisher = {mathdoc},
volume = {504},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a2/}
}
Kh. D. Ikramov. On matrices with pairwise orthogonal rows and columns. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 47-53. http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a2/