Linear operators preserving combinatorial matrix sets
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 181-199

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates linear functionals $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$ preserving a set $\mathcal{M} \subseteq \mathbb{R}$, i.e., $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$ such that $\phi(v) \in \mathcal{M}$ for any vector $v \in \mathbb{R}^n$ with components from $\mathcal{M}$. For different types of subsets of real numbers, characterizations of linear functionals that preserve them are obtained. In particular, the sets $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_+, \mathbb{Q}_+, \mathbb{R}_+$, several infinite sets of integers, bounded and unbounded intervals, and finite subsets of real numbers are considered. A characterization of linear functionals preserving a set $\mathcal{M}$ also allows one to describe linear operators preserving matrices with entries from this set, i.e., operators $\Phi : M_{n, m} \rightarrow M_{n, m}$ such that all entries of a matrix $\Phi(A)$ belong to $\mathcal{M}$ for any matrix $A \in M_{n, m}$ with all entries in $\mathcal{M}$. As an example, linear operators preserving $(0, 1)$, $(\pm 1)$, and $(\pm 1, 0)$-matrice are characterized.
@article{ZNSL_2021_504_a10,
     author = {P. M. Shteyner},
     title = {Linear operators preserving combinatorial matrix sets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {181--199},
     publisher = {mathdoc},
     volume = {504},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a10/}
}
TY  - JOUR
AU  - P. M. Shteyner
TI  - Linear operators preserving combinatorial matrix sets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 181
EP  - 199
VL  - 504
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a10/
LA  - ru
ID  - ZNSL_2021_504_a10
ER  - 
%0 Journal Article
%A P. M. Shteyner
%T Linear operators preserving combinatorial matrix sets
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 181-199
%V 504
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a10/
%G ru
%F ZNSL_2021_504_a10
P. M. Shteyner. Linear operators preserving combinatorial matrix sets. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 181-199. http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a10/