Linear operators preserving combinatorial matrix sets
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 181-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper investigates linear functionals $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$ preserving a set $\mathcal{M} \subseteq \mathbb{R}$, i.e., $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$ such that $\phi(v) \in \mathcal{M}$ for any vector $v \in \mathbb{R}^n$ with components from $\mathcal{M}$. For different types of subsets of real numbers, characterizations of linear functionals that preserve them are obtained. In particular, the sets $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_+, \mathbb{Q}_+, \mathbb{R}_+$, several infinite sets of integers, bounded and unbounded intervals, and finite subsets of real numbers are considered. A characterization of linear functionals preserving a set $\mathcal{M}$ also allows one to describe linear operators preserving matrices with entries from this set, i.e., operators $\Phi : M_{n, m} \rightarrow M_{n, m}$ such that all entries of a matrix $\Phi(A)$ belong to $\mathcal{M}$ for any matrix $A \in M_{n, m}$ with all entries in $\mathcal{M}$. As an example, linear operators preserving $(0, 1)$, $(\pm 1)$, and $(\pm 1, 0)$-matrice are characterized.
@article{ZNSL_2021_504_a10,
     author = {P. M. Shteyner},
     title = {Linear operators preserving combinatorial matrix sets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {181--199},
     year = {2021},
     volume = {504},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a10/}
}
TY  - JOUR
AU  - P. M. Shteyner
TI  - Linear operators preserving combinatorial matrix sets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 181
EP  - 199
VL  - 504
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a10/
LA  - ru
ID  - ZNSL_2021_504_a10
ER  - 
%0 Journal Article
%A P. M. Shteyner
%T Linear operators preserving combinatorial matrix sets
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 181-199
%V 504
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a10/
%G ru
%F ZNSL_2021_504_a10
P. M. Shteyner. Linear operators preserving combinatorial matrix sets. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 181-199. http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a10/

[1] T. Ando, “Majorization, doubly stochastic matrices, and comparison of eigenvalues”, Linear Algebra Appl., 118 (1989), 163–248 | DOI | MR | Zbl

[2] L. B. Beasley, S.-G. Lee, “Linear operators preserving multivariate majorization”, Linear Algebra Appl., 304:1 (2000), 141–159 | DOI | MR | Zbl

[3] L. B. Beasley, S.-G. Lee, Y.-H. Lee, “A characterization of strong preservers of matrix majorization”, Linear Algebra Appl., 367 (2003), 341–346 | DOI | MR | Zbl

[4] R. A. Brualdi, Combinatorial Matrix Classes, Encyclopedia of Mathematics, Cambridge University Press, 2006 | Zbl

[5] G. Frobenius, “Uber die darstellung der endlichen gruppen durch linear substitutionen”, Sitz. Deutsch. Akad. Wiss. Berlin, 1897, 994–1015 | Zbl

[6] G. Dahl, “Matrix majorization”, Linear Algebra Appl., 288 (1999), 53–73 | DOI | MR | Zbl

[7] G. Dahl, “Majorization polytopes”, Linear Algebra Appl., 297 (1999), 157–175 | DOI | MR | Zbl

[8] G. Dahl, A. Guterman, P. Shteyner, “Majorization for matrix classes”, Linear Algebra Appl., 555 (2018), 201–221 | DOI | MR | Zbl

[9] G. Dahl, A. Guterman, P. Shteyner, “Majorization for $(0,1)$-matrices”, Linear Algebra Appl., 585 (2020), 147–163 | DOI | MR | Zbl

[10] A. Guterman, C.-K. Li, P. Šemrl, “Some general techniques on linear preserver problems”, Linear Algebra Appl., 315:1–3 (2000), 61–81 | DOI | MR | Zbl

[11] A. Guterman, P. Shteyner, “Linear converters of weak, directional and strong majorizations”, Linear Algebra Appl., 613 (2021), 320–346 | DOI | MR | Zbl

[12] A. Guterman, P. M. Shteiner, “Lineinye otobrazheniya, sokhranyayuschie mazhorizatsiyu naborov matrits”, Vestn. SPbGU, matem. mekh. astron., 7 (65) (2020), 217–229 | Zbl

[13] C.-K. Li, S. Pierce, “Linear preserver problems”, Amer. Math. Monthly, 108:7 (2001), 591–605 | DOI | MR | Zbl

[14] C.-K. Li, E. Poon, “Linear operators preserving directional majorization”, Linear Algebra Appl., 325:1 (2001), 141–146 | MR | Zbl

[15] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, Second Edition, Springer, New York, 2011 | Zbl

[16] F. M. Pería, P. Massey, L. Silvestre, “Weak matrix majorization”, Linear Algebra Appl., 403 (2005), 343–368 | DOI | MR | Zbl

[17] S. Pierce, et al., “A survey of linear preserver problems”, Linear Multilinear Algebra, 33 (1992), 1–119 | DOI | Zbl

[18] P. M. Shteiner, “Konvertatsiya stolbtsovoi mazhorizatsii”, Zap. nauchn. semin. POMI, 496, 2020, 195–215