Transformations of assembly number for 4-regular graphs
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 21-46
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Simple assembly graphs characterize the process of DNA recombination in living cells. The assembly number, number of distinct Hamiltonian sets of polygonal paths, one-sided and middle additivity of a graph are important characteristics of such graphs. This paper investigates transformations of simple assembly graphs that allow one to increase the assembly number or to obtain middle additive graphs. Also the minimum number of loops that must be added to the edges of a tangled chord graph in order to increase its assembly number by 1 is computed.
@article{ZNSL_2021_504_a1,
     author = {A. E. Guterman and E. M. Kreines and N. V. Ostroukhova},
     title = {Transformations of assembly number for 4-regular graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {21--46},
     year = {2021},
     volume = {504},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a1/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - E. M. Kreines
AU  - N. V. Ostroukhova
TI  - Transformations of assembly number for 4-regular graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 21
EP  - 46
VL  - 504
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a1/
LA  - ru
ID  - ZNSL_2021_504_a1
ER  - 
%0 Journal Article
%A A. E. Guterman
%A E. M. Kreines
%A N. V. Ostroukhova
%T Transformations of assembly number for 4-regular graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 21-46
%V 504
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a1/
%G ru
%F ZNSL_2021_504_a1
A. E. Guterman; E. M. Kreines; N. V. Ostroukhova. Transformations of assembly number for 4-regular graphs. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 21-46. http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a1/

[1] A. Angeleska, N. Jonoska, M. Saito, “DNA recombinations through assembly graphs”, Discr. Appl. Math., 157 (2009), 3020–3037 | DOI | MR | Zbl

[2] J. Burns, E. Dolzhenko, N. Jonoska, T. Muche, M. Saito, “Four-regular graphs with rigid vertices associated to DNA recombination”, Discr. Appl. Math., 161 (2013), 1378–1394 | DOI | Zbl

[3] A. E. Guterman, E. M. Kreines, N. V. Ostroukhova, “$2$-slova: ikh grafy i matritsy”, Zap. nauchn. semin. POMI, 482, 2019, 45–72

[4] D. A. Cruz, M. M. Ferrari, N. Jonoska, L. Nabergall, M. Saito, “Insertions yielding equivalent double occurrence words”, Fundam. Inform., 171:1–4 (2019), 113–132 | DOI

[5] A. Ehrenfeucht, T. Harju, I. Petre, DM. Prescott, G. Rozenberg, Computation in Living Cells: Gene Assembly in Ciliates, Nat. Comput. Ser., Springer, Berlin–Heidelberg, 2003

[6] A. K. Zvonkin, S. K. Lando, Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, M., 2010

[7] B. Shtylla, L. Traldi, L. Zulli, “On the realization of double occurrence words”, Discr. Math., 309:6 (2009), 1769–1773 | DOI | MR | Zbl