Nonnegative chainable matrices and Kolmogorov's condition
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 5-20
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper proves that an indecomposable nonnegative matrix is chainable if and only if it satisfies Kolmogorov's condition, under which the Markov chain determined by a stochastic matrix obeys the multidimensional local limit theorem.
@article{ZNSL_2021_504_a0,
author = {Yu. A. Al'pin and I. V. Bashkin},
title = {Nonnegative chainable matrices and {Kolmogorov's} condition},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--20},
publisher = {mathdoc},
volume = {504},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a0/}
}
Yu. A. Al'pin; I. V. Bashkin. Nonnegative chainable matrices and Kolmogorov's condition. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIV, Tome 504 (2021), pp. 5-20. http://geodesic.mathdoc.fr/item/ZNSL_2021_504_a0/