Polynomial approximations in a convex domain in $\mathbb C^n$ with the exponential decaying inside
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 154-171
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Omega$ be convex domain in $\mathbb C^n$ satisfying some restrictions, $f$ be holomorphic in $\Omega$ and continuons in $\overline{\Omega}$, $f\in H^{r+\omega}(\overline{\Omega})$ with a modulus of continuity $\omega$. Then there are polynomials $P_N$, $\deg P_N\le N$, such that $ |f(z)-P_N(z)| \le cN^{-r}\omega(\frac{1}{N})$, $z \in \overline{\Omega}$, and $|f(z)-P_N(z)| \le c \exp(-c_0(K)N)$, $z\in K\subset \Omega$, where $K$ is any compact strictly inside $\Omega$.
@article{ZNSL_2021_503_a9,
author = {N. A. Shirokov},
title = {Polynomial approximations in a convex domain in $\mathbb C^n$ with the exponential decaying inside},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {154--171},
publisher = {mathdoc},
volume = {503},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a9/}
}
TY - JOUR AU - N. A. Shirokov TI - Polynomial approximations in a convex domain in $\mathbb C^n$ with the exponential decaying inside JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 154 EP - 171 VL - 503 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a9/ LA - ru ID - ZNSL_2021_503_a9 ER -
N. A. Shirokov. Polynomial approximations in a convex domain in $\mathbb C^n$ with the exponential decaying inside. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 154-171. http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a9/