On the vector-valued extension of Littlewood--Paley--Rubio de Francia inequality for Walsh functions
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 137-153
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the case of trigonometric system, Rubio de Francia proved the one-sided Littlewood–Paley inequality for arbitrary intervals and for the functions in the $L^p$ spaces, $2\le p$.
			
            
            
            
          
        
      @article{ZNSL_2021_503_a8,
     author = {A. Tselishchev},
     title = {On the vector-valued extension of {Littlewood--Paley--Rubio} de {Francia} inequality for {Walsh} functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--153},
     publisher = {mathdoc},
     volume = {503},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a8/}
}
                      
                      
                    TY - JOUR AU - A. Tselishchev TI - On the vector-valued extension of Littlewood--Paley--Rubio de Francia inequality for Walsh functions JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 137 EP - 153 VL - 503 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a8/ LA - ru ID - ZNSL_2021_503_a8 ER -
A. Tselishchev. On the vector-valued extension of Littlewood--Paley--Rubio de Francia inequality for Walsh functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 137-153. http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a8/
