On the vector-valued extension of Littlewood–Paley–Rubio de Francia inequality for Walsh functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 137-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the case of trigonometric system, Rubio de Francia proved the one-sided Littlewood–Paley inequality for arbitrary intervals and for the functions in the $L^p$ spaces, $2\le p$.
@article{ZNSL_2021_503_a8,
     author = {A. Tselishchev},
     title = {On the vector-valued extension of {Littlewood{\textendash}Paley{\textendash}Rubio} de {Francia} inequality for {Walsh} functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--153},
     year = {2021},
     volume = {503},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a8/}
}
TY  - JOUR
AU  - A. Tselishchev
TI  - On the vector-valued extension of Littlewood–Paley–Rubio de Francia inequality for Walsh functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 137
EP  - 153
VL  - 503
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a8/
LA  - ru
ID  - ZNSL_2021_503_a8
ER  - 
%0 Journal Article
%A A. Tselishchev
%T On the vector-valued extension of Littlewood–Paley–Rubio de Francia inequality for Walsh functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 137-153
%V 503
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a8/
%G ru
%F ZNSL_2021_503_a8
A. Tselishchev. On the vector-valued extension of Littlewood–Paley–Rubio de Francia inequality for Walsh functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 137-153. http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a8/

[1] E. Berkson, T. A. Gillespie, J. L. Torrea, “Vector-valued transference”, Functional Space Theory and Its Applications, Proc. Int. Conf. 13th Academic Symp. (Wuhan, 2003), ed. P. Liu, Research Information, Burnham, 2004, 1–27

[2] J. Bourgain, “Extension of a result of Benedek, Calderon and Panzone”, Ark. Mat., 22:1 (1984), 91–95 | DOI | MR | Zbl

[3] T. Hytönen, J. van Neerven, M. Veraar, L. Weis, Analysis in Banach Spaces, v. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 63, Martingales and Littlewood–Paley Theory, Springer, Cham, 2016 | Zbl

[4] T. Hytönen, J. van Neerven, M. Veraar, L. Weis, Analysis in Banach Spaces, v. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 67, Probabilistic methods and operator theory, Springer, Cham, 2017 | Zbl

[5] T. P. Hytönen, J. L. Torrea, D. V. Yakubovich, “The Littlewood–Paley–Rubio de Francia property of a Banach space for the case of equal intervals”, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 819–832 | DOI | MR | Zbl

[6] T. P. Hytönen, L. Weis, “Singular convolution integrals with operator-valued kernel”, Math. Z., 255 (2007), 393–425 | MR | Zbl

[7] S. V. Kislyakov, “Martingalnye preobrazovaniya i ravnomerno skhodyaschiesya ortogonalnye ryady”, Zap. nauchn. sem. LOMI, 141, 1985, 18–38 | MR | Zbl

[8] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. II, Results in Mathematics and Related Areas, 97, Function spaces, Springer, Berlin–New York, 1979 | Zbl

[9] C. Muscalu, W. Schlag, Classical and multilinear harmonic analysis, v. I, Cambridge Studies in Advanced Mathematics, 137, Cambridge University Press, Cambridge, 2013 | Zbl

[10] N. N. Osipov, “Littlewood–Paley–Rubio de Francia inequality for the Walsh system”, Algebra i analiz, 28:5 (2016), 236–246

[11] G. Pisier, Martingales in Banach spaces, Cambridge Studies in Advanced Mathematics, 155, Cambridge University Press, Cambridge, 2016 | Zbl

[12] D. Potapov, F. Sukochev, Q. Xu, “On the vector-valued Littlewood–Paley–Rubio de Francia inequality”, Rev. Mat. Iberoamericana, 28:3 (2012), 839–856 | DOI | MR | Zbl

[13] J. L. Rubio de Francia, “A Littlewood–Paley inequality for arbitrary intervals”, Rev. Mat. Iberoamericana, 1:2 (1985), 1–14 | DOI | MR | Zbl

[14] J. L. Rubio de Francia, “Martingale and integral transforms of Banach space valued functions”, Probability and Banach Spaces (Zaragoza, 1985), Lecture Notes in Math., 1221, Springer, 1986, 195–222 | DOI