A simple observation on Heisenberg-like uncertainty principles
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 113-120
Cet article a éte moissonné depuis la source Math-Net.Ru
A solution is given to a conjecture proposed recently by Y. Wigderson and A. Wigderson concerning a “Heisenberg-like” uncertainty principle. That conjecture is about the image of the map $ f \mapsto \frac{\|f\|_q\|\hat{f}\|_q}{\|f\|_2\|\hat{f}\|_2}, f\in \mathscr{S}(\mathbb{R})\setminus\{0\} $, where $\mathscr{S}(\mathbb{R}) $ stands for the Schwartz class of functions on the real line. Also, a more general question is answered, where the $L_2$ norm is replaced by the $L_p$ norm in the denominator.
@article{ZNSL_2021_503_a6,
author = {Yiyu Tang},
title = {A simple observation on {Heisenberg-like} uncertainty principles},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {113--120},
year = {2021},
volume = {503},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a6/}
}
Yiyu Tang. A simple observation on Heisenberg-like uncertainty principles. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 113-120. http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a6/
[1] W. Bechner, “Inequalities in Fourier analysis”, Ann. Math., 102 (1975), 159–182 | DOI | MR
[2] L. Grafakos, Classical Fourier Analysis, Graduate Texts in Mathematics, 249, 3rd edition, Springer, 2014 | Zbl
[3] L. Huang, Z. Liu, J. Wu, Quantum smooth uncertainty principles for von Neumann bi-algebras, July 19, 2021, arXiv: 2107.09057
[4] Y. Tang (June 17–18, 2021), 2021 https://sites.google.com/view/oudynamicalsystems/complane
[5] Y. Wigderson, A. Wigderson, “The uncertainty principle: variations on a theme”, Bull. Amer. Math. Soc., 58:2 (2021), 225–261 | DOI | MR | Zbl