Weighted weak-type $\mathrm{BMO}$-regularity
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 97-112

Voir la notice de l'article provenant de la source Math-Net.Ru

Stability for the weak-type $\mathrm{BMO}$-regularity property of a couple $(X, Y)$ under the perturbation $(X (u), Y (v))$ by some weights is considered. An example of weighted Lorentz spaces $\mathrm{L}_{p, q (\cdot)}$ with piecewise constant $q (\cdot)$ shows that in general such stability does not characterize the usual $\mathrm{BMO}$-regularity. On the other hand, for couples of Banach lattices $X$ and $Y$ with the Fatou property such that $(X^r)' Y^r$ is also Banach with some $r > 0$, the simultaneous weak-type $\mathrm{BMO}$-regularity of $(X, Y)$ and $(X (u), Y (v))$ implies that $\log (u / v) \in \mathrm{BMO}$. For couples of $r$-convex lattices with the Fatou property we establish the sufficiency of the weak-type $\mathrm{BMO}$-regularity for the $K$-closedness of the respective Hardy-type spaces without the assumption that the space of the second variable is discrete, generalizing earlier results.
@article{ZNSL_2021_503_a5,
     author = {D. V. Rutsky},
     title = {Weighted weak-type $\mathrm{BMO}$-regularity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {97--112},
     publisher = {mathdoc},
     volume = {503},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a5/}
}
TY  - JOUR
AU  - D. V. Rutsky
TI  - Weighted weak-type $\mathrm{BMO}$-regularity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 97
EP  - 112
VL  - 503
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a5/
LA  - ru
ID  - ZNSL_2021_503_a5
ER  - 
%0 Journal Article
%A D. V. Rutsky
%T Weighted weak-type $\mathrm{BMO}$-regularity
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 97-112
%V 503
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a5/
%G ru
%F ZNSL_2021_503_a5
D. V. Rutsky. Weighted weak-type $\mathrm{BMO}$-regularity. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 97-112. http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a5/