Weighted weak-type $\mathrm{BMO}$-regularity
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 97-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Stability for the weak-type $\mathrm{BMO}$-regularity property of a couple $(X, Y)$ under the perturbation $(X (u), Y (v))$ by some weights is considered. An example of weighted Lorentz spaces $\mathrm{L}_{p, q (\cdot)}$ with piecewise constant $q (\cdot)$ shows that in general such stability does not characterize the usual $\mathrm{BMO}$-regularity. On the other hand, for couples of Banach lattices $X$ and $Y$ with the Fatou property such that $(X^r)' Y^r$ is also Banach with some $r > 0$, the simultaneous weak-type $\mathrm{BMO}$-regularity of $(X, Y)$ and $(X (u), Y (v))$ implies that $\log (u / v) \in \mathrm{BMO}$. For couples of $r$-convex lattices with the Fatou property we establish the sufficiency of the weak-type $\mathrm{BMO}$-regularity for the $K$-closedness of the respective Hardy-type spaces without the assumption that the space of the second variable is discrete, generalizing earlier results.
@article{ZNSL_2021_503_a5,
     author = {D. V. Rutsky},
     title = {Weighted weak-type $\mathrm{BMO}$-regularity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {97--112},
     year = {2021},
     volume = {503},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a5/}
}
TY  - JOUR
AU  - D. V. Rutsky
TI  - Weighted weak-type $\mathrm{BMO}$-regularity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 97
EP  - 112
VL  - 503
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a5/
LA  - ru
ID  - ZNSL_2021_503_a5
ER  - 
%0 Journal Article
%A D. V. Rutsky
%T Weighted weak-type $\mathrm{BMO}$-regularity
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 97-112
%V 503
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a5/
%G ru
%F ZNSL_2021_503_a5
D. V. Rutsky. Weighted weak-type $\mathrm{BMO}$-regularity. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 97-112. http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a5/

[1] I. Asekritova, N. Krugliak, “On equivalence of K- and J-methods for $(n + 1)$-tuples of Banach spaces”, Studia Math., 122:2 (1997), 99–116 | MR | Zbl

[2] J. Bergh, J. {Löfström}, Interpolation spaces. An introduction, Springer-Verlag, 1976 | Zbl

[3] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer-Verlag, Berlin, 2011 | DOI | Zbl

[4] S. V. Kisliakov, “Interpolation of $H_p$-spaces$:$ some recent developments”, Israel Math. Conf., 13 (1999), 102–140 | MR | Zbl

[5] S. V. Kislyakov, “On BMO-regular couples of lattices of measurable functions”, Stud. Math., 159:2 (2003), 277–289 | DOI

[6] D. V. Rutsky, “Corona problem with data in ideal spaces of sequences”, Archiv der Mathematik, 108:6 (2017), 609–619 | DOI | MR | Zbl

[7] D. V. Rutsky, “Real Interpolation of Hardy-type Spaces and BMO-regularity”, J. Fourier Anal. Appl., 26:4 (2020), 1–40 | DOI | MR

[8] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993 | Zbl

[9] S. V. Kislyakov, “O VMO-regulyarnykh reshetkakh izmerimykh funktsii”, Algebra i analiz, 14:2 (2002), 117–135

[10] S. V. Kislyakov, “O VMO-regulyarnykh reshetkakh izmerimykh funktsii. II”, Zap. nauchn. semin. POMI, 303, no. 31, 2003, 161–168

[11] D. V. Rutskii, “Zamechaniya o BMO-regulyarnosti i AK-ustoichivosti”, Zap. nauchn. semin. POMI, 376, 2010, 116–165

[12] D. V. Rutskii, “BMO-regulyarnost v reshetkakh izmerimykh funktsii na prostranstvakh odnorodnogo tipa”, Algebra i Analiz, 23:2 (2011), 248–295 | MR

[13] D. V. Rutskii, “O svyazi mezhdu AK-ustoichivostyu i BMO-regulyarnostyu”, Zap. nauchn. semin. POMI, 416, 2013, 175–187

[14] D. V. Rutskii, “Vektornoznachnaya ogranichennost operatorov garmonicheskogo analiza”, Algebra i analiz, 28:6 (2016), 91–117 | MR

[15] D. V. Rutskii, “Veschestvennaya interpolyatsiya prostranstv tipa Khardi: anons i nekotorye zamechaniya”, Zap. nauchn. semin. POMI, 480, 2019, 170–190 | MR