A note on asymptotical estimates for the rate of decrease at infinity of the eigenfunctions of integral operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 72-83
Voir la notice de l'article provenant de la source Math-Net.Ru
The article is devoted to the problem of finding estimates of the rate of decrease at infinity of the eigenfunctions of integral operators. A class of integral operators that admit majorant operators, defined by a certain sublinear function $S(x)$, is introduced. It is shown that all eigenfunctions of operators from this class admit a universal estimate for the rate of decrease at infinity which includes the function $S(x)$. The applications of the obtained result to integral equation typical for mathematical physics are discussed.
@article{ZNSL_2021_503_a3,
author = {V. M. Kaplitskii},
title = {A note on asymptotical estimates for the rate of decrease at infinity of the eigenfunctions of integral operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {72--83},
publisher = {mathdoc},
volume = {503},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a3/}
}
TY - JOUR AU - V. M. Kaplitskii TI - A note on asymptotical estimates for the rate of decrease at infinity of the eigenfunctions of integral operators JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 72 EP - 83 VL - 503 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a3/ LA - ru ID - ZNSL_2021_503_a3 ER -
%0 Journal Article %A V. M. Kaplitskii %T A note on asymptotical estimates for the rate of decrease at infinity of the eigenfunctions of integral operators %J Zapiski Nauchnykh Seminarov POMI %D 2021 %P 72-83 %V 503 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a3/ %G ru %F ZNSL_2021_503_a3
V. M. Kaplitskii. A note on asymptotical estimates for the rate of decrease at infinity of the eigenfunctions of integral operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 72-83. http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a3/