Logarithmically absolutely monotone trigonometric functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 57-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study absolute monotonicity and logarithmic absolute monotonicity for functions $$ f(z)=\dfrac{\cos{\alpha_1z}\cdot\ldots\cdot\cos{\alpha_Mz} \cdot\sin{\beta_1z}\cdot\ldots\cdot\sin{\beta_Nz}} {\cos{\alpha'_1z}\cdot\ldots\cdot\cos{\alpha'_{M'}z} \cdot\sin{\beta'_1z}\cdot\ldots\cdot\sin{\beta'_{N'}z}}z^{N'-N}. $$ Here $N,M,N',M'\in\Bbb Z_+$, $\alpha_j,\alpha_j',\beta_j,\beta_j'\geqslant 0$; if $\beta=0$, then the factor $\sin{\beta z}$ is replaced by $z$; if $N,M,N'$, or $M'$ equals zero, then the corresponding factors are absent. A criterion of logarithmic absolute monotonicity for $f$ is obtained. We give some applications of absolute monotonicity to sharp inequalities for derivatives and differences of trigonometric polynomials and entire functions of exponential type.
@article{ZNSL_2021_503_a2,
     author = {O. L. Vinogradov},
     title = {Logarithmically absolutely monotone trigonometric functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {57--71},
     year = {2021},
     volume = {503},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a2/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - Logarithmically absolutely monotone trigonometric functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 57
EP  - 71
VL  - 503
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a2/
LA  - ru
ID  - ZNSL_2021_503_a2
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T Logarithmically absolutely monotone trigonometric functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 57-71
%V 503
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a2/
%G ru
%F ZNSL_2021_503_a2
O. L. Vinogradov. Logarithmically absolutely monotone trigonometric functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 57-71. http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a2/

[1] S. N. Bernshtein, “Analiticheskie funktsii veschestvennoi peremennoi, ikh vozniknovenie i puti obobschenii”, Sobranie sochinenii v 4-kh tomakh, v. 1, Izd. AN SSSR, M., 1952, 285–320

[2] B.-N. Guo, F. Qi, “A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function”, U.P.B. Sci. Bull., Series A, 72:2 (2010), 21–30 | Zbl

[3] R. L. Schilling, R. Song, Z. Vondraček, Bernstein functions, De Gruyter, Berlin, 2010 | Zbl

[4] F. W. Steutel, K. van Harn, Infinite divisibility of probability distributions on the real line, Marcel Dekker, New York, 2004 | Zbl

[5] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatgiz, M., 1959

[6] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, v. 1, Elementarnye funktsii, Fizmatlit, M., 2002

[7] O. L. Vinogradov, V. V. Zhuk, “Tochnye otsenki pogreshnostei formul tipa chislennogo differentsirovaniya na trigonometricheskikh mnogochlenakh”, Probl. mat. analiza, 21 (2000), 68–109 | Zbl

[8] Z.-H. Yang, Y.-M. Chu, “Monotonicity and absolute monotonicity for the two-parameter hyperbolic and trigonometric functions with applications”, J. of inequalities and applications, 200 (2016)

[9] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, v. 3, Spetsialnye funktsii. Dopolnitelnye glavy, Fizmatlit, M., 2003

[10] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1965

[11] G. Polia, G. Sege, Zadachi i teoremy iz analiza, v. 2, Nauka, M., 1978

[12] O. L. Vinogradov, “Tochnye otsenki pogreshnostei formul tipa chislennogo differentsirovaniya na klassakh tselykh funktsii konechnoi stepeni”, Sib. mat. zh., 48:3 (2007), 538–555 | MR | Zbl