Logarithmically absolutely monotone trigonometric functions
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 57-71
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study absolute monotonicity and logarithmic absolute monotonicity for functions $$ f(z)=\dfrac{\cos{\alpha_1z}\cdot\ldots\cdot\cos{\alpha_Mz} \cdot\sin{\beta_1z}\cdot\ldots\cdot\sin{\beta_Nz}} {\cos{\alpha'_1z}\cdot\ldots\cdot\cos{\alpha'_{M'}z} \cdot\sin{\beta'_1z}\cdot\ldots\cdot\sin{\beta'_{N'}z}}z^{N'-N}. $$ Here $N,M,N',M'\in\Bbb Z_+$, $\alpha_j,\alpha_j',\beta_j,\beta_j'\geqslant 0$; if $\beta=0$, then the factor $\sin{\beta z}$ is replaced by $z$; if $N,M,N'$, or $M'$ equals zero, then the corresponding factors are absent. A criterion of logarithmic absolute monotonicity for $f$ is obtained. 
We give some applications of absolute monotonicity to sharp inequalities for derivatives and differences of trigonometric polynomials and entire functions of exponential type.
			
            
            
            
          
        
      @article{ZNSL_2021_503_a2,
     author = {O. L. Vinogradov},
     title = {Logarithmically absolutely monotone trigonometric functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {57--71},
     publisher = {mathdoc},
     volume = {503},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a2/}
}
                      
                      
                    O. L. Vinogradov. Logarithmically absolutely monotone trigonometric functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 57-71. http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a2/
