Interpolation of abstract spaces of Hardy type
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 22-56
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Interpolation theorems are proved for Hardy-type spaces arising form
certain uniform algebras more general than weak*-Dirichlet algebras. It is
shown that, in a sense, the entire setting is not sensitive to the
introduction of a weight. Some generalizations that  model the case of two
variables are also discussed.
			
            
            
            
          
        
      @article{ZNSL_2021_503_a1,
     author = {V. A. Borovitskiy and S. V. Kislyakov},
     title = {Interpolation of abstract spaces of {Hardy} type},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {22--56},
     publisher = {mathdoc},
     volume = {503},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a1/}
}
                      
                      
                    V. A. Borovitskiy; S. V. Kislyakov. Interpolation of abstract spaces of Hardy type. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 22-56. http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a1/
