On the operator Lipschitz norm of the functions $z^n$ on a finite set of the unit circle
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 5-21

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains some remarks concerning of the behavior of the operator Lipschitz norm of the functions $z^n$ on subsets of the unit circle. In particular, we prove that the operator Lipschitz norm of the restriction $z^n$ on a subset $\Lambda$ of the unit circle is equal to $|n|$ if and only if $\Lambda$ contains at least $2|n|$ elements.
@article{ZNSL_2021_503_a0,
     author = {A. B. Aleksandrov},
     title = {On the operator {Lipschitz} norm of the functions $z^n$ on a finite set of the unit circle},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {503},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - On the operator Lipschitz norm of the functions $z^n$ on a finite set of the unit circle
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 5
EP  - 21
VL  - 503
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a0/
LA  - ru
ID  - ZNSL_2021_503_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T On the operator Lipschitz norm of the functions $z^n$ on a finite set of the unit circle
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 5-21
%V 503
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a0/
%G ru
%F ZNSL_2021_503_a0
A. B. Aleksandrov. On the operator Lipschitz norm of the functions $z^n$ on a finite set of the unit circle. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 5-21. http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a0/