On the operator Lipschitz norm of the functions $z^n$ on a finite set of the unit circle
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 5-21
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper contains some remarks concerning of the behavior of the operator Lipschitz norm of the functions $z^n$ on subsets of the unit circle. In particular, we prove that the operator Lipschitz norm of the restriction $z^n$ on a subset $\Lambda$ of the unit circle is equal to $|n|$ if and only if $\Lambda$ contains at least $2|n|$ elements.
			
            
            
            
          
        
      @article{ZNSL_2021_503_a0,
     author = {A. B. Aleksandrov},
     title = {On the operator {Lipschitz} norm of the functions $z^n$ on a finite set of the unit circle},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {503},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a0/}
}
                      
                      
                    TY - JOUR AU - A. B. Aleksandrov TI - On the operator Lipschitz norm of the functions $z^n$ on a finite set of the unit circle JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 5 EP - 21 VL - 503 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a0/ LA - ru ID - ZNSL_2021_503_a0 ER -
A. B. Aleksandrov. On the operator Lipschitz norm of the functions $z^n$ on a finite set of the unit circle. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 49, Tome 503 (2021), pp. 5-21. http://geodesic.mathdoc.fr/item/ZNSL_2021_503_a0/
