On additions on the multiplicative monoid of integers
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 4, Tome 502 (2021), pp. 139-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study modules over a certain generalized ring. This ring is a noncommutative tensor square of the ring of integers. The modules in the question are related to some interesting arithmetic problems. In particular they are related to solved Gauss' class number problem for imaginary quadratic fields.
@article{ZNSL_2021_502_a5,
     author = {A. L. Smirnov},
     title = {On additions on the multiplicative monoid of integers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {139--151},
     year = {2021},
     volume = {502},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a5/}
}
TY  - JOUR
AU  - A. L. Smirnov
TI  - On additions on the multiplicative monoid of integers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 139
EP  - 151
VL  - 502
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a5/
LA  - ru
ID  - ZNSL_2021_502_a5
ER  - 
%0 Journal Article
%A A. L. Smirnov
%T On additions on the multiplicative monoid of integers
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 139-151
%V 502
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a5/
%G ru
%F ZNSL_2021_502_a5
A. L. Smirnov. On additions on the multiplicative monoid of integers. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 4, Tome 502 (2021), pp. 139-151. http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a5/

[1] N. Durov, New Approach to Arakelov Geometry, 16 Apr 2007, arXiv: 0704.2030 [math AG]

[2] A. Suslin, V. Voevodsky, “Bloch–Kato conjecture and motivic cohomology with finite coefficients”, The arithmetic and geometry of algebraic cycles, NATO Science Series, 548, Kluwer Acad. Publ., Dordrecht, 2000, 117–189 | Zbl

[3] N. Burbaki, Kommutativnaya algebra, Mir, M., 1971

[4] Zh.-P. Serr, “Lokalnaya algebra i teoriya kratnostei”, Matematika, 7:5 (1963), 3–94

[5] H.M. Stark, “On the gap in the theorem of Heegner”, J. Number Theory, 1, 16–27 | DOI | MR

[6] Zh.-P. Serr, “Kompleksnoe umnozhenie”, Algebraicheskaya teoriya chisel, eds. Dzh. Kassels, A. Frelikh, Mir, M., 1969 | Zbl

[7] M. Atya, I. Makdonald, Vvedenie v kommutativnuyu algebru, Mir, M., 1972

[8] M. Hochster, “Nonuniqueness of coefficient rings in a polynomial ring”, Proc. AMS, 34:1 (1972), 81–82 | DOI | Zbl

[9] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981

[10] Zh.-P. Serr, Kurs arifmetiki, Mir, M., 1972

[11] J. Tate, “The Arithmetic of Elliptic Curves”, Invent. Math., 23 (1974), 179–206 | DOI | MR | Zbl

[12] D. Goldfeld, “Gauss' class number problem for imaginary quadratic fields”, Bull. Amer. Math. Soc., 13 (1985), 23–37 | DOI | MR | Zbl

[13] E. W. Howe, K.E. Lauter, J. Top, Pointless curves of genus three and four, 10 Mar 2004, arXiv: math/0403178v1 [math.NT]

[14] A. Mattuck, J. Tate, “On the Inequality of Castelnuovo–Severi”, Hamb. Abh., 22 (1958), 295–299 | DOI | MR | Zbl

[15] M. Deuring, “Imaginary quadratische Zahlkorper mit der Klassenzahl 1”, Math. Z., 37 (1933), 405–415 | DOI | MR