@article{ZNSL_2021_502_a5,
author = {A. L. Smirnov},
title = {On additions on the multiplicative monoid of integers},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {139--151},
year = {2021},
volume = {502},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a5/}
}
A. L. Smirnov. On additions on the multiplicative monoid of integers. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 4, Tome 502 (2021), pp. 139-151. http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a5/
[1] N. Durov, New Approach to Arakelov Geometry, 16 Apr 2007, arXiv: 0704.2030 [math AG]
[2] A. Suslin, V. Voevodsky, “Bloch–Kato conjecture and motivic cohomology with finite coefficients”, The arithmetic and geometry of algebraic cycles, NATO Science Series, 548, Kluwer Acad. Publ., Dordrecht, 2000, 117–189 | Zbl
[3] N. Burbaki, Kommutativnaya algebra, Mir, M., 1971
[4] Zh.-P. Serr, “Lokalnaya algebra i teoriya kratnostei”, Matematika, 7:5 (1963), 3–94
[5] H.M. Stark, “On the gap in the theorem of Heegner”, J. Number Theory, 1, 16–27 | DOI | MR
[6] Zh.-P. Serr, “Kompleksnoe umnozhenie”, Algebraicheskaya teoriya chisel, eds. Dzh. Kassels, A. Frelikh, Mir, M., 1969 | Zbl
[7] M. Atya, I. Makdonald, Vvedenie v kommutativnuyu algebru, Mir, M., 1972
[8] M. Hochster, “Nonuniqueness of coefficient rings in a polynomial ring”, Proc. AMS, 34:1 (1972), 81–82 | DOI | Zbl
[9] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981
[10] Zh.-P. Serr, Kurs arifmetiki, Mir, M., 1972
[11] J. Tate, “The Arithmetic of Elliptic Curves”, Invent. Math., 23 (1974), 179–206 | DOI | MR | Zbl
[12] D. Goldfeld, “Gauss' class number problem for imaginary quadratic fields”, Bull. Amer. Math. Soc., 13 (1985), 23–37 | DOI | MR | Zbl
[13] E. W. Howe, K.E. Lauter, J. Top, Pointless curves of genus three and four, 10 Mar 2004, arXiv: math/0403178v1 [math.NT]
[14] A. Mattuck, J. Tate, “On the Inequality of Castelnuovo–Severi”, Hamb. Abh., 22 (1958), 295–299 | DOI | MR | Zbl
[15] M. Deuring, “Imaginary quadratische Zahlkorper mit der Klassenzahl 1”, Math. Z., 37 (1933), 405–415 | DOI | MR