Symmetries structure of karyon tilings
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 4, Tome 502 (2021), pp. 74-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this article, we study the symmetry properties of the karyon tilings $\mathcal{T}$ of the torus $\mathbb{T}^d$ of arbitrary dimension $d$. Its main results are the following statements: 1) The tilings $\mathcal{T}$ are translation invariant relative to the canonical shift $S$ of the torus $\mathbb{T}^d$. This is a fundamental property of the karyon tilings. 2) Nondegenerate karyon tilings $\mathcal{T}$ have $2^d$ central symmetries.
@article{ZNSL_2021_502_a2,
     author = {V. G. Zhuravlev},
     title = {Symmetries structure of karyon tilings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {74--121},
     year = {2021},
     volume = {502},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a2/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Symmetries structure of karyon tilings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 74
EP  - 121
VL  - 502
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a2/
LA  - ru
ID  - ZNSL_2021_502_a2
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Symmetries structure of karyon tilings
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 74-121
%V 502
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a2/
%G ru
%F ZNSL_2021_502_a2
V. G. Zhuravlev. Symmetries structure of karyon tilings. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 4, Tome 502 (2021), pp. 74-121. http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a2/

[1] V. G. Zhuravlev, “Lokalnaya struktura yadernykh razbienii”, Zap. nauch. semin. POMI, 502, 2021, 32–73

[2] V. G. Zhuravlev, “Differentsirovanie indutsirovannykh razbienii tora i mnogomernye priblizheniya algebraicheskikh chisel”, Zap. nauch. semin. POMI, 445, 2016, 33–92

[3] V. G. Zhuravlev, “Dvumernye priblizheniya metodom delyaschikhsya toricheskikh razbienii”, Zap. nauch. semin. POMI, 440, 2015, 81–98

[4] V. G. Zhuravlev, “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Sovremennye problemy matematiki, 299, MIAN, 2017, 283–303

[5] V. G. Zhuravlev, Yadernye tsepnye drobi, VlGU, Vladimir, 2019

[6] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izv. RAN, ser. matem., 71:2 (2007), 89–122 | MR | Zbl

[7] N. N. Manuilov, “Chislo popadanii tochek posledovatelnosti $\{n\tau_g\}$ v poluinterval”, Chebyshevskii sbornik, 5:3 (2004), 72–81 | MR | Zbl

[8] G. Rauzy, “Nombres algeébriques algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | DOI | MR | Zbl

[9] V. G. Zhuravlev, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka na tore”, Zapiski nauchnykh seminarov POMI, 322, 2005, 83–106 | Zbl

[10] V. G. Zhuravlev, “Parametrizatsiya dvumernogo kvaziperiodicheskogo razbieniya Rozi”, Algebra i analiz, 22:4 (2010), 21–56 | MR

[11] V. G. Zhuravlev, “Lokalnyi algoritm postroeniya proizvodnykh razbienii dvumernogo tora”, Zap. nauch. semin. POMI, 479, 2019, 85–120

[12] V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauch. semin. POMI, 449, 2016, 168–195

[13] V. G. Zhuravlev, “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI, 392, 2011, 95–145

[14] V. G. Zhuravlev, “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika, K 75-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, v. 1, Sovr. probl. matem., 16, MIAN, M., 2012, 82–102

[15] V. G. Zhuravlev, “On additive property of a complexity function related to Rauzy tiling”, Anal. Probab. Methods Number Theory, eds. E. Manstavicius et al., TEV, Vilnius, 2007, 240–254 | Zbl

[16] A. V. Shutov, A. V. Maleev, V. G. Zhuravlev, “Complex quasiperiodic self-similar tilings: their parameterization, boundaries, complexity, growth and symmetry”, Acta Crystallogr., A66 (2010), 427–437 | DOI | MR

[17] F. Kharari, Teoriya grafov, Izd-vo Mir, 1973

[18] R. Basaker, T. Saati, Konechnye grafy i seti, Izd-vo Nauka, 1974

[19] G. Kokseter, U. Mozer, Porozhdayuschie elementy i opredelyayuschie sootnosheniya diskretnykh grupp, Izd-vo Nauka, 1980