Local structure of the karyon tilings
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 4, Tome 502 (2021), pp. 32-73
Voir la notice de l'article provenant de la source Math-Net.Ru
Karyon tilings $\mathcal{T}$ of the torus $\mathbb{T}^d$ of arbitrary dimension $d$ are considered. The prototype of such tilings is one-dimensional Fibonacci tilings and their two-dimensional analog the Rauzy tiling. Tilings $\mathcal{T}$ are important for applications to multidimensional continued fractions. In this article, we examine the local properties of karyon tilings $\mathcal{T}$.
@article{ZNSL_2021_502_a1,
author = {V. G. Zhuravlev},
title = {Local structure of the karyon tilings},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {32--73},
publisher = {mathdoc},
volume = {502},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a1/}
}
V. G. Zhuravlev. Local structure of the karyon tilings. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 4, Tome 502 (2021), pp. 32-73. http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a1/