Local structure of the karyon tilings
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 4, Tome 502 (2021), pp. 32-73

Voir la notice de l'article provenant de la source Math-Net.Ru

Karyon tilings $\mathcal{T}$ of the torus $\mathbb{T}^d$ of arbitrary dimension $d$ are considered. The prototype of such tilings is one-dimensional Fibonacci tilings and their two-dimensional analog the Rauzy tiling. Tilings $\mathcal{T}$ are important for applications to multidimensional continued fractions. In this article, we examine the local properties of karyon tilings $\mathcal{T}$.
@article{ZNSL_2021_502_a1,
     author = {V. G. Zhuravlev},
     title = {Local structure of the karyon tilings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {32--73},
     publisher = {mathdoc},
     volume = {502},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a1/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Local structure of the karyon tilings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 32
EP  - 73
VL  - 502
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a1/
LA  - ru
ID  - ZNSL_2021_502_a1
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Local structure of the karyon tilings
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 32-73
%V 502
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a1/
%G ru
%F ZNSL_2021_502_a1
V. G. Zhuravlev. Local structure of the karyon tilings. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 4, Tome 502 (2021), pp. 32-73. http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a1/