Local structure of the karyon tilings
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 4, Tome 502 (2021), pp. 32-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Karyon tilings $\mathcal{T}$ of the torus $\mathbb{T}^d$ of arbitrary dimension $d$ are considered. The prototype of such tilings is one-dimensional Fibonacci tilings and their two-dimensional analog the Rauzy tiling. Tilings $\mathcal{T}$ are important for applications to multidimensional continued fractions. In this article, we examine the local properties of karyon tilings $\mathcal{T}$.
@article{ZNSL_2021_502_a1,
     author = {V. G. Zhuravlev},
     title = {Local structure of the karyon tilings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {32--73},
     year = {2021},
     volume = {502},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a1/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Local structure of the karyon tilings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 32
EP  - 73
VL  - 502
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a1/
LA  - ru
ID  - ZNSL_2021_502_a1
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Local structure of the karyon tilings
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 32-73
%V 502
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a1/
%G ru
%F ZNSL_2021_502_a1
V. G. Zhuravlev. Local structure of the karyon tilings. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 4, Tome 502 (2021), pp. 32-73. http://geodesic.mathdoc.fr/item/ZNSL_2021_502_a1/

[1] V. G. Zhuravlev, “Differentsirovanie indutsirovannykh razbienii tora i mnogomernye priblizheniya algebraicheskikh chisel”, Zap. nauch. semin. POMI, 445, 2016, 33–92

[2] V. G. Zhuravlev, “Dvumernye priblizheniya metodom delyaschikhsya toricheskikh razbienii”, Zap. nauch. semin. POMI, 440, 2015, 81–98

[3] V. G. Zhuravlev, “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Sovremennye problemy matematiki, 299, MIAN, 2017, 283–303

[4] V. G. Zhuravlev, Yadernye tsepnye drobi, VlGU, Vladimir, 2019

[5] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izv. RAN, ser. matem., 71:2 (2007), 89–122 | MR | Zbl

[6] N. N. Manuilov, “Chislo popadanii tochek posledovatelnosti $\{n\tau_g\}$ v poluinterval”, Chebyshevskii sbornik, 5:3 (2004), 72–81 | MR | Zbl

[7] G. Rauzy, “Nombres algébriques algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | DOI | MR | Zbl

[8] V. G. Zhuravlev, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka na tore”, Zapiski nauchnykh seminarov POMI, 322, 2005, 83–106 | Zbl

[9] V. G. Zhuravlev, “Parametrizatsiya dvumernogo kvaziperiodicheskogo razbieniya Rozi”, Algebra i analiz, 22:4 (2010), 21–56 | MR

[10] V. G. Zhuravlev, “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI, 392, 2011, 95–145

[11] V. G. Zhuravlev, “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika, K 75-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, v. 1, Sovr. probl. matem., 16, MIAN, M., 2012, 82–102

[12] V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauch. semin. POMI, 449, 2016, 168–195

[13] E. S. Fedorov, Nachala ucheniya o figurakh, M., 1953

[14] G. F. Voronoi, Sobranie sochinenii, v. 2, Kiev, 1952

[15] V. G. Zhuravlev, “On additive property of a complexity function related to Rauzy tiling”, Anal. Probab. Methods Number Theory, eds. E. Manstavicius et al., TEV, Vilnius, 2007, 240–254 | Zbl

[16] V. G. Zhuravlev, “Lokalnyi algoritm postroeniya proizvodnykh razbienii dvumernogo tora”, Zap. nauch. semin. POMI, 479, 2019, 85–120

[17] A. V. Shutov, A. V. Maleev, V. G. Zhuravlev, “Complex quasiperiodic self-similar tilings: their parameterization, boundaries, complexity, growth and symmetry”, Acta Crystallogr., A66 (2010), 427–437 | DOI | MR