@article{ZNSL_2021_501_a9,
author = {Yu. A. Davydov},
title = {Limit theorems for {\textquotedblleft}random flights{\textquotedblright}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {149--159},
year = {2021},
volume = {501},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a9/}
}
Yu. A. Davydov. Limit theorems for “random flights”. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 149-159. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a9/
[1] P. Billingsley, Convergence of probability measures, John Wiley and Sons, N-Y, 1968 | Zbl
[2] Yu. Davydov, V. Konakov, “Random walks in non homogeneous Poisson environment”, Selected contributions in honor of V. Konakov, Modern problems of stochastic analysis and statistics, 208, Springer, Heidelberg, 2017, 3–24 | DOI | Zbl
[3] I. I. Gikhman, A. V. Skorohod, Introduction to the theory of random processes, Dover Publications, 1996
[4] J. C. Kluyver, “A local probability problem”, Proceedings of the Section of Sciences, v. 8, Koninklijke Akademie van Wetenschappen te Amsterdam, 1905, 341–350
[5] B. Mandelbrot, The fractal geometry of Nature, N-Y, 1982 | Zbl
[6] E. Orsingher, R. Garra, “Random flights governed by Klein-Gordon type partial differential equations”, Stoch. Proc. and Appl., 124 (2014), 2171–2187 | DOI | Zbl
[7] K. Pearson, “The problem of the Random Walk”, Nature, 72:1865 (1905), 294 | DOI
[8] L. Rayleigh, “On the problem of the random flights and of random vibrations in one, two and three dimensions”, Philosophical Magazine, 37 (1919), 321–347
[9] V. V. Vysotsky, “A limit theorem for the position of a particle in the Lorentz model”, J. Math. Sci. (N. Y.), 139:3 (2006), 6520–6534 | DOI | MR
[10] V. V. Vysotsky, “A functional limit theorem for the position of a particle in a Lorentz type model”, Markov Processes and Related Fields, 12:4 (2007), 767–790 | MR