Limit theorems for “random flights”
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 149-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article discusses the asymptotic behavior of a particle performing so-called “random flight”. In a recent work by Davydov–Konakov (2017), when the moments $T_k$ of changing the direction of the particle form an inhomogeneous Poisson process, it was shown that, depending on the nature of the inhomogeneity, three variants of the limiting distribution arise naturally for the zoomed particle trajectory. The purpose of this work is to show that these three options are preserved under much more general assumptions about the sequence $(T_k)$.
@article{ZNSL_2021_501_a9,
     author = {Yu. A. Davydov},
     title = {Limit theorems for {\textquotedblleft}random flights{\textquotedblright}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--159},
     year = {2021},
     volume = {501},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a9/}
}
TY  - JOUR
AU  - Yu. A. Davydov
TI  - Limit theorems for “random flights”
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 149
EP  - 159
VL  - 501
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a9/
LA  - ru
ID  - ZNSL_2021_501_a9
ER  - 
%0 Journal Article
%A Yu. A. Davydov
%T Limit theorems for “random flights”
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 149-159
%V 501
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a9/
%G ru
%F ZNSL_2021_501_a9
Yu. A. Davydov. Limit theorems for “random flights”. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 149-159. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a9/

[1] P. Billingsley, Convergence of probability measures, John Wiley and Sons, N-Y, 1968 | Zbl

[2] Yu. Davydov, V. Konakov, “Random walks in non homogeneous Poisson environment”, Selected contributions in honor of V. Konakov, Modern problems of stochastic analysis and statistics, 208, Springer, Heidelberg, 2017, 3–24 | DOI | Zbl

[3] I. I. Gikhman, A. V. Skorohod, Introduction to the theory of random processes, Dover Publications, 1996

[4] J. C. Kluyver, “A local probability problem”, Proceedings of the Section of Sciences, v. 8, Koninklijke Akademie van Wetenschappen te Amsterdam, 1905, 341–350

[5] B. Mandelbrot, The fractal geometry of Nature, N-Y, 1982 | Zbl

[6] E. Orsingher, R. Garra, “Random flights governed by Klein-Gordon type partial differential equations”, Stoch. Proc. and Appl., 124 (2014), 2171–2187 | DOI | Zbl

[7] K. Pearson, “The problem of the Random Walk”, Nature, 72:1865 (1905), 294 | DOI

[8] L. Rayleigh, “On the problem of the random flights and of random vibrations in one, two and three dimensions”, Philosophical Magazine, 37 (1919), 321–347

[9] V. V. Vysotsky, “A limit theorem for the position of a particle in the Lorentz model”, J. Math. Sci. (N. Y.), 139:3 (2006), 6520–6534 | DOI | MR

[10] V. V. Vysotsky, “A functional limit theorem for the position of a particle in a Lorentz type model”, Markov Processes and Related Fields, 12:4 (2007), 767–790 | MR