Grassmann angles and absorption probabilities of Gaussian convex hulls
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 126-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $M$ be an arbitrary subset in $\mathbb{R}^n$ with a conic (or positive) hull $C$. Consider its Gaussian image $AM$, where $A$ is a $k\times n$-matrix whose entries are independent standard Gaussian random variables. We show that the probability that the convex hull of $AM$ contains the origin in its interior coincides with the $k$-th Grassmann angle of $C$. Also, we prove that the expected Grassmann angles of $AC$ coincide with the corresponding Grassmann angles of $C$. Using the latter result, we show that the expected sum of $j$-th Grassmann angles at $\ell$-dimensional faces of a Gaussian simplex equals the analogous angle-sum for the regular simplex of the same dimension.
@article{ZNSL_2021_501_a8,
     author = {F. G\"otze and Z. Kabluchko and D. Zaporozhets},
     title = {Grassmann angles and absorption probabilities of {Gaussian} convex hulls},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {126--148},
     year = {2021},
     volume = {501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a8/}
}
TY  - JOUR
AU  - F. Götze
AU  - Z. Kabluchko
AU  - D. Zaporozhets
TI  - Grassmann angles and absorption probabilities of Gaussian convex hulls
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 126
EP  - 148
VL  - 501
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a8/
LA  - en
ID  - ZNSL_2021_501_a8
ER  - 
%0 Journal Article
%A F. Götze
%A Z. Kabluchko
%A D. Zaporozhets
%T Grassmann angles and absorption probabilities of Gaussian convex hulls
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 126-148
%V 501
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a8/
%G en
%F ZNSL_2021_501_a8
F. Götze; Z. Kabluchko; D. Zaporozhets. Grassmann angles and absorption probabilities of Gaussian convex hulls. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 126-148. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a8/

[1] C. B. Allendoerfer, “Steiner's formulae on a general $S^{n+1}$”, Bull. Amer. Math. Soc., 54 (1948), 128–135 | DOI | MR | Zbl

[2] D. Amelunxen, Measures on polyhedral cones: characterizations and kinematic formulas, 2014, arXiv: 1412.1569 | Zbl

[3] D. Amelunxen, M. Lotz, M. B. McCoy, J. A. Tropp, “Living on the edge: phase transitions in convex programs with random data”, Inf. Inference, 3:3 (2014), 224–294 | DOI | MR | Zbl

[4] D. Amelunxen, M. Lotz, J. Walvin, Effective condition number bounds for convex regularization, 2017, arXiv: 1707.01775

[5] Y. M. Baryshnikov, R. A. Vitale, “Regular simplices and Gaussian samples”, Discrete Comput. Geom., 11:2 (1994), 141–147 | DOI | MR | Zbl

[6] S. Chevet, “Processus Gaussiens et volumes mixtes”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 36:1 (1976), 47–65 | DOI | MR | Zbl

[7] R. Eldan, “Volumetric properties of the convex hull of an $n$-dimensional Brownian motion”, Electron. J. Probab., 19:45 (2014), 34 | MR | Zbl

[8] F. Gao, D. Hug, R. Schneider, “Intrinsic volumes and polar sets in spherical space”, Math. Notae, 41 (2003), 159–176 ; Homage to Luis Santaló, v. 1, 2001/02 (Spanish) | Zbl

[9] F. Gao, R. A. Vitale, “Intrinsic volumes of the Brownian motion body”, Discrete Comput. Geom., 26:1 (2001), 41–50 | DOI | MR | Zbl

[10] S. Glasauer, Integralgeometrie konvexer Körper im sphärischen Raum, PhD Thesis, University of Freiburg, 1995 http://www.hs-augsburg.de/g̃lasauer/publ/diss.pdf | Zbl

[11] L. Goldstein, I. Nourdin, G. Peccati, “Gaussian phase transitions and conic intrinsic volumes: Steining the Steiner formula”, Ann. Appl. Probab., 27:1 (2017), 1–47 | DOI | MR | Zbl

[12] B. Grünbaum, “Grassmann angles of convex polytopes”, Acta Math., 121 (1968), 293–302 | DOI | MR | Zbl

[13] G. Herglotz, “Über die Steinersche Formel für Parallelflächen”, Abh. Math. Sem. Hansischen Univ., 15 (1943), 165–177 | DOI | MR | Zbl

[14] Z. Kabluchko, A. Marynych, D. Temesvari, C. Thäle, “Cones generated by random points on half-spheres and convex hulls of Poisson point processes”, Probab. Theory and Related Fields, 2018 (to appear)

[15] Z. Kabluchko, V. Vysotsky, D. Zaporozhets, “Convex hulls of random walks, hyperplane arrangements, and Weyl chambers”, Geom. Funct. Anal., 27:4 (2017), 880–918 | DOI | MR | Zbl

[16] Z. Kabluchko, D. Zaporozhets, “Intrinsic volumes of Sobolev balls with applications to Brownian convex hulls”, Trans. Amer. Math. Soc., 368:12 (2016), 8873–8899 | DOI | MR | Zbl

[17] Z. Kabluchko, D. Zaporozhets, “Angles of the Gaussian simplex”, Zap. Nauchn. Semin. POMI, 476, 2018, 79–91

[18] Z. Kabluchko, D. Zaporozhets, “Expected volumes of Gaussian polytopes, external angles, and multiple order statistics”, Trans. Amer. Math. Soc., 372:3 (2019), 1709–1733 | DOI | MR | Zbl

[19] D. A. Klain, G.-C. Rota, Introduction to geometric probability, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1997 | Zbl

[20] C. J. Klivans, E. Swartz, “Projection volumes of hyperplane arrangements”, Discrete Comput. Geom., 46:3 (2011), 417–426 | DOI | MR | Zbl

[21] M. B. McCoy, J. A. Tropp, “From Steiner formulas for cones to concentration of intrinsic volumes”, Discrete Comput. Geom., 51:4 (2014), 926–963 | DOI | MR | Zbl

[22] R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, N.J., 1970 | Zbl

[23] L. A. Santaló, Integral geometry and geometric probability, With a foreword by Mark Kac, Encyclopedia of Mathematics and its Applications, 1, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976 | Zbl

[24] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1993 | Zbl

[25] R. Schneider, W. Weil, Stochastic and Integral Geometry, Probability and its Applications (New York), Springer-Verlag, Berlin, 2008 | DOI | Zbl

[26] V. N. Sudakov, “Geometric problems in the theory of infinite-dimensional probability distributions”, Proc. Steklov Inst. Math. (2), 141 (1979), 1–178; Trudy Mat. Inst. Steklov, 141 (1976) | Zbl

[27] B. S. Tsirelson, “A geometric approach to maximum likelihood estimation for an infinite-dimensional Gaussian location. II”, Teor. Veroyatnost. i Primenen., 30:4 (1985), 772–779 | MR

[28] R. A. Vitale, “Intrinsic volumes and Gaussian processes”, Adv. in Appl. Probab., 33:2 (2001), 354–364 | DOI | MR | Zbl

[29] R. A. Vitale, “On the Gaussian representation of intrinsic volumes”, Statist. Probab. Lett., 78:10 (2008), 1246–1249 | DOI | MR | Zbl

[30] R. A. Vitale, “Convex bodies and Gaussian processes”, Image Anal. Stereol., 29:1 (2010), 13–18 | DOI | MR | Zbl

[31] J. G. Wendel, “A problem in geometric probability”, Math. Scand., 11 (1962), 109–111 | DOI | MR | Zbl