Grassmann angles and absorption probabilities of Gaussian convex hulls
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 126-148

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be an arbitrary subset in $\mathbb{R}^n$ with a conic (or positive) hull $C$. Consider its Gaussian image $AM$, where $A$ is a $k\times n$-matrix whose entries are independent standard Gaussian random variables. We show that the probability that the convex hull of $AM$ contains the origin in its interior coincides with the $k$-th Grassmann angle of $C$. Also, we prove that the expected Grassmann angles of $AC$ coincide with the corresponding Grassmann angles of $C$. Using the latter result, we show that the expected sum of $j$-th Grassmann angles at $\ell$-dimensional faces of a Gaussian simplex equals the analogous angle-sum for the regular simplex of the same dimension.
@article{ZNSL_2021_501_a8,
     author = {F. G\"otze and Z. Kabluchko and D. Zaporozhets},
     title = {Grassmann angles and absorption probabilities of {Gaussian} convex hulls},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {126--148},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a8/}
}
TY  - JOUR
AU  - F. Götze
AU  - Z. Kabluchko
AU  - D. Zaporozhets
TI  - Grassmann angles and absorption probabilities of Gaussian convex hulls
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 126
EP  - 148
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a8/
LA  - en
ID  - ZNSL_2021_501_a8
ER  - 
%0 Journal Article
%A F. Götze
%A Z. Kabluchko
%A D. Zaporozhets
%T Grassmann angles and absorption probabilities of Gaussian convex hulls
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 126-148
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a8/
%G en
%F ZNSL_2021_501_a8
F. Götze; Z. Kabluchko; D. Zaporozhets. Grassmann angles and absorption probabilities of Gaussian convex hulls. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 126-148. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a8/