Convergence to infinite-dimensional compound Poisson distributions on convex polyhedra
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 118-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The aim of the present work is to provide a supplement to the authors' paper [4]. It is shown that our results on the approximation of distributions of sums of independent summands by the accompanying compound Poisson laws and the estimates of the proximity of sequential convolutions of multidimensional distributions on convex polyhedra may be almost automatically transferred to the infinite-dimensional case.
@article{ZNSL_2021_501_a7,
     author = {F. G\"otze and A. Yu. Zaitsev},
     title = {Convergence to infinite-dimensional compound {Poisson} distributions on convex polyhedra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {118--125},
     year = {2021},
     volume = {501},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a7/}
}
TY  - JOUR
AU  - F. Götze
AU  - A. Yu. Zaitsev
TI  - Convergence to infinite-dimensional compound Poisson distributions on convex polyhedra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 118
EP  - 125
VL  - 501
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a7/
LA  - ru
ID  - ZNSL_2021_501_a7
ER  - 
%0 Journal Article
%A F. Götze
%A A. Yu. Zaitsev
%T Convergence to infinite-dimensional compound Poisson distributions on convex polyhedra
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 118-125
%V 501
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a7/
%G ru
%F ZNSL_2021_501_a7
F. Götze; A. Yu. Zaitsev. Convergence to infinite-dimensional compound Poisson distributions on convex polyhedra. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 118-125. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a7/

[1] T. V. Arak, “O sblizhenii $n$-kratnykh svertok raspredelenii, imeyuschikh neotritsatelnuyu kharakteristicheskuyu funktsiyu, s soprovozhdayuschimi zakonami”, Teoriya veroyatn. i ee primen., 25:2 (1980), 225–246 | MR | Zbl

[2] T. V. Arak, A. Yu. Zaitsev, “Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin”, Tr. MIAN SSSR, 174, 1986, 214 pp. | Zbl

[3] F. Gëttse, A. Yu. Zaitsev, “Redkie sobytiya i puassonovskie tochechnye protsessy”, Zap. nauchn. semin. POMI, 466, 2017, 109–119

[4] F. Gëttse, A. Yu. Zaitsev, “Otsenki blizosti svertok veroyatnostnykh raspredelenii na vypuklykh mnogogrannikakh”, Zap. nauchn. semin. POMI, 474, 2018, 108–117

[5] F. Gëttse, A. Yu. Zaitsev, “Ob alternativnykh approksimiruyuschikh raspredeleniyakh v mnogomernom variante vtoroi ravnomernoi predelnoi teoremy Kolmogorova”, Teoriya veroyatn. i ee primen., 66 (2022) (to appear)

[6] A. Yu. Zaitsev, “Otsenka blizosti raspredelenii posledovatelnykh summ nezavisimykh odinakovo raspredelennykh sluchainykh vektorov”, Zap. nauchn. semin. LOMI, 97, 1980, 83–87 | Zbl

[7] A. Yu. Zaitsev, “Nekotorye svoistva $n$-kratnykh svertok raspredelenii”, Teoriya veroyatn. i ee primen., 26:1 (1981), 152–156 | MR

[8] A. Yu. Zaitsev, “O tochnosti approksimatsii raspredelenii summ nezavisimykh sluchainykh velichin, otlichnykh ot nulya s maloi veroyatnostyu, s pomoschyu soprovozhdayuschikh zakonov”, Teoriya veroyatn. i ee primen., 28:2 (1983), 625–636 | Zbl

[9] A. Yu. Zaitsev, “K mnogomernomu obobscheniyu metoda treugolnykh funktsii”, Zap. nauchn. semin. LOMI, 158, 1987, 81–104 | Zbl

[10] A. Yu. Zaitsev, “Estimates for the closeness of successive convolutions of multidimensional symmetric distributions”, Probab. Theory Relat. Fields, 79:2 (1988), 175–200 | DOI | Zbl

[11] A. Yu. Zaitsev, “Mnogomernyi variant vtoroi ravnomernoi predelnoi teoremy Kolmogorova”, Teoriya veroyatn. i ee primen., 34:1 (1989), 128–151 | MR

[12] A. Yu. Zaitsev, “Ob approksimatsii svertok mnogomernykh simmetrichnykh raspredelenii soprovozhdayuschimi zakonami”, Zap. nauchn. semin. LOMI, 177, 1989, 55–72

[13] A. Yu. Zaitsev, “Ob odnom klasse neravnomernykh otsenok v mnogomernykh predelnykh teoremakh”, Zap. nauchn. semin. POMI, 184, 1990, 92–105 | Zbl

[14] A. Yu. Zaitsev, “Ob approksimatsii vyborki puassonovskim tochechnym protsessom”, Zap. nauchn. semin. POMI, 298, 2003, 111–125 | Zbl