Convergence to infinite-dimensional compound Poisson distributions on convex polyhedra
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 118-125
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The aim of the present work is to provide a supplement to the authors' paper [4]. It is shown that our results on the approximation of distributions of sums of independent summands by the accompanying compound Poisson laws and the estimates of the proximity of sequential convolutions of multidimensional distributions on convex polyhedra may be almost automatically transferred to the infinite-dimensional case.
			
            
            
            
          
        
      @article{ZNSL_2021_501_a7,
     author = {F. G\"otze and A. Yu. Zaitsev},
     title = {Convergence to infinite-dimensional compound {Poisson} distributions on convex polyhedra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {118--125},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a7/}
}
                      
                      
                    TY - JOUR AU - F. Götze AU - A. Yu. Zaitsev TI - Convergence to infinite-dimensional compound Poisson distributions on convex polyhedra JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 118 EP - 125 VL - 501 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a7/ LA - ru ID - ZNSL_2021_501_a7 ER -
F. Götze; A. Yu. Zaitsev. Convergence to infinite-dimensional compound Poisson distributions on convex polyhedra. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 118-125. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a7/