Estimating the amount of sparsity in two-point mixture models
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 78-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of estimating the fraction of nonzero means in a sparse normal mixture model in the region where variable selection is possible. The focus is on the situation in which the proportion of nonzero means is very small. The proposed estimator is shown to be nearly rate optimal in the asymptotically minimax sense. Using this estimator, one can also consistently estimate the sparsity parameter in sparse normal mixtures, whose knowledge, in particular, is required to carry out the so-called almost full variable selection procedure. The advantage of using the new estimator is illustrated analytically and numerically. The obtained results can be extended to some nonnormal mixtures.
@article{ZNSL_2021_501_a5,
     author = {Yibo Wang and N. A. Stepanova},
     title = {Estimating the amount of sparsity in two-point mixture models},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {78--101},
     year = {2021},
     volume = {501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a5/}
}
TY  - JOUR
AU  - Yibo Wang
AU  - N. A. Stepanova
TI  - Estimating the amount of sparsity in two-point mixture models
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 78
EP  - 101
VL  - 501
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a5/
LA  - en
ID  - ZNSL_2021_501_a5
ER  - 
%0 Journal Article
%A Yibo Wang
%A N. A. Stepanova
%T Estimating the amount of sparsity in two-point mixture models
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 78-101
%V 501
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a5/
%G en
%F ZNSL_2021_501_a5
Yibo Wang; N. A. Stepanova. Estimating the amount of sparsity in two-point mixture models. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 78-101. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a5/

[1] P. J. Bickel, K. A. Doksum, Mathematical Statistics. Basic Ideas and Selected Topics, v. I, 2nd ed., Prentice-Hall, New Jersey, 2001

[2] T. T. Cai, J. Jin, M. Low, Estimation and confidence sets for sparse normal models, 2006, arXiv: math/0612623v1

[3] T. T. Cai, J. Jin, M. Low, “Estimation and confidence sets for sparse normal models”, Ann. Statist., 35 (2007), 2421–2449 | MR | Zbl

[4] T. T. Cai, X. J. Jeng, J. Jin, “Optimal detection of heterogeneous and heteroscedastic mixtures”, J. R. Statist. Soc. B, 73 (2011), 629–662 | DOI | Zbl

[5] M. Csörgő, S. Csörgő, L. Horváth, D. Mason, “Weighted empirical and quantile processes”, Ann. Probab., 14 (1986), 31–85 | MR | Zbl

[6] X. Cui, Optimal component selection in high dimensions, MSc Thesis, Carleton University, 2014

[7] D. Donoho, J. Jin, “Higher criticism for detecting sparse heterogeneous mixtures”, Ann. Statist., 32 (2004), 962–994 | DOI | MR | Zbl

[8] D. Donoho, J. Jin, “Feature selection by higher criticism thresholding achieves the optimal phase diagram”, Phil. Trans. R. Soc. A, 367 (2009), 4449–4470 | DOI | MR | Zbl

[9] B. J. Eastwood, V. R. Eastwood, “Tabulating weighted functionals of Brownian bridges via Monte Carlo simulation”, Asymptotic methods in probability and statistics, A volume in honour of Miklós Csörgő, ed. B. Szyszkowicz, Elsivier Science B. V., Amsterdam, 707–719 | Zbl

[10] F. Eicker, “The asymptotic distribution of the suprema of the standardized empirical processes”, Ann. Statist., 7 (1979), 116–138 | DOI | MR | Zbl

[11] Y. Fan, J. Jin, Z. Yao, “Optimal classification in sparse Gaussian graphic models”, Ann. Statist., 41:5 (2013), 2537–2571 | DOI | MR | Zbl

[12] C. R. Genovese, J. Jin, L. Wasserman, Z. Yao, “A comparison of the lasso and marginal regression”, J. Mach. Learn. Res., 13 (2012), 2107–2143 | MR | Zbl

[13] C.-P. Han, “Some relationships between noncentral chi-squared and normal distributions”, Biometrika, 62:1 (1975), 213–214 | MR | Zbl

[14] Yu. I. Ingster, “Some problems of hypothesis testing leading to infinitely divisible distribution”, Math. Meth. Statist., 6 (1997), 47–69 | Zbl

[15] D. Jaeschke, “The asymptotic distribution of the supremum of the standardized empirical distribution function on subintervals”, Ann. Statist., 7 (1979), 108–115 | DOI | MR | Zbl

[16] M. Lifshits, Lectures on Gaussian Porcesses, Springer, 2012

[17] N. Meinshausen, J. Rice, “Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses”, Ann. Statist., 34 (2006), 373–393 | MR | Zbl

[18] M. Orasch, W. Pouliot, “Tabulating weighted sup-norm functionals used in change-point problem”, J. Stat. Comput. Simul., 74 (2004), 249–276 | DOI | MR | Zbl

[19] G. R. Shorack, J. A. Wellner, Empirical Processes with Applications to Statistics, Wiley, New York, 1986 | Zbl

[20] N. Stepanova, T. Pavlenko, “Goodness-of-fit tests based on sup-functionals of weighted empirical processes”, Theory Probab. Appl., 63:2 (2018), 358–388 | DOI | MR | Zbl