@article{ZNSL_2021_501_a5,
author = {Yibo Wang and N. A. Stepanova},
title = {Estimating the amount of sparsity in two-point mixture models},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {78--101},
year = {2021},
volume = {501},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a5/}
}
Yibo Wang; N. A. Stepanova. Estimating the amount of sparsity in two-point mixture models. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 78-101. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a5/
[1] P. J. Bickel, K. A. Doksum, Mathematical Statistics. Basic Ideas and Selected Topics, v. I, 2nd ed., Prentice-Hall, New Jersey, 2001
[2] T. T. Cai, J. Jin, M. Low, Estimation and confidence sets for sparse normal models, 2006, arXiv: math/0612623v1
[3] T. T. Cai, J. Jin, M. Low, “Estimation and confidence sets for sparse normal models”, Ann. Statist., 35 (2007), 2421–2449 | MR | Zbl
[4] T. T. Cai, X. J. Jeng, J. Jin, “Optimal detection of heterogeneous and heteroscedastic mixtures”, J. R. Statist. Soc. B, 73 (2011), 629–662 | DOI | Zbl
[5] M. Csörgő, S. Csörgő, L. Horváth, D. Mason, “Weighted empirical and quantile processes”, Ann. Probab., 14 (1986), 31–85 | MR | Zbl
[6] X. Cui, Optimal component selection in high dimensions, MSc Thesis, Carleton University, 2014
[7] D. Donoho, J. Jin, “Higher criticism for detecting sparse heterogeneous mixtures”, Ann. Statist., 32 (2004), 962–994 | DOI | MR | Zbl
[8] D. Donoho, J. Jin, “Feature selection by higher criticism thresholding achieves the optimal phase diagram”, Phil. Trans. R. Soc. A, 367 (2009), 4449–4470 | DOI | MR | Zbl
[9] B. J. Eastwood, V. R. Eastwood, “Tabulating weighted functionals of Brownian bridges via Monte Carlo simulation”, Asymptotic methods in probability and statistics, A volume in honour of Miklós Csörgő, ed. B. Szyszkowicz, Elsivier Science B. V., Amsterdam, 707–719 | Zbl
[10] F. Eicker, “The asymptotic distribution of the suprema of the standardized empirical processes”, Ann. Statist., 7 (1979), 116–138 | DOI | MR | Zbl
[11] Y. Fan, J. Jin, Z. Yao, “Optimal classification in sparse Gaussian graphic models”, Ann. Statist., 41:5 (2013), 2537–2571 | DOI | MR | Zbl
[12] C. R. Genovese, J. Jin, L. Wasserman, Z. Yao, “A comparison of the lasso and marginal regression”, J. Mach. Learn. Res., 13 (2012), 2107–2143 | MR | Zbl
[13] C.-P. Han, “Some relationships between noncentral chi-squared and normal distributions”, Biometrika, 62:1 (1975), 213–214 | MR | Zbl
[14] Yu. I. Ingster, “Some problems of hypothesis testing leading to infinitely divisible distribution”, Math. Meth. Statist., 6 (1997), 47–69 | Zbl
[15] D. Jaeschke, “The asymptotic distribution of the supremum of the standardized empirical distribution function on subintervals”, Ann. Statist., 7 (1979), 108–115 | DOI | MR | Zbl
[16] M. Lifshits, Lectures on Gaussian Porcesses, Springer, 2012
[17] N. Meinshausen, J. Rice, “Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses”, Ann. Statist., 34 (2006), 373–393 | MR | Zbl
[18] M. Orasch, W. Pouliot, “Tabulating weighted sup-norm functionals used in change-point problem”, J. Stat. Comput. Simul., 74 (2004), 249–276 | DOI | MR | Zbl
[19] G. R. Shorack, J. A. Wellner, Empirical Processes with Applications to Statistics, Wiley, New York, 1986 | Zbl
[20] N. Stepanova, T. Pavlenko, “Goodness-of-fit tests based on sup-functionals of weighted empirical processes”, Theory Probab. Appl., 63:2 (2018), 358–388 | DOI | MR | Zbl