Some variations on the extremal index
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 52-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We re-consider Leadbetter's extremal index for stationary sequences. It has interpretation as reciprocal of the expected size of an extremal cluster above high thresholds. We focus on heavytailed time series, in particular on regularly varying stationary sequences, and discuss recent research in extreme value theory for these models. A regularly varying time series has multivariate regularly varying finite-dimensional distributions. Thanks to results by Basrak and Segers [2] we have explicit representations of the limiting cluster structure of extremes, leading to explicit expressions of the limiting point process of exceedances and the extremal index as a summary measure of extremal clustering. The extremal index appears in various situations which do not seem to be directly related, like the convergence of maxima and point processes. We consider different representations of the extremal index which arise from the considered context. We discuss the theory and apply it to a regularly varying AR(1) process and the solution to an affine stochastic recurrence equation.
@article{ZNSL_2021_501_a4,
     author = {G. Buritic\'a and N. Meyer and T. Mikosch and O. Wintenberger},
     title = {Some variations on the extremal index},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {52--77},
     year = {2021},
     volume = {501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a4/}
}
TY  - JOUR
AU  - G. Buriticá
AU  - N. Meyer
AU  - T. Mikosch
AU  - O. Wintenberger
TI  - Some variations on the extremal index
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 52
EP  - 77
VL  - 501
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a4/
LA  - en
ID  - ZNSL_2021_501_a4
ER  - 
%0 Journal Article
%A G. Buriticá
%A N. Meyer
%A T. Mikosch
%A O. Wintenberger
%T Some variations on the extremal index
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 52-77
%V 501
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a4/
%G en
%F ZNSL_2021_501_a4
G. Buriticá; N. Meyer; T. Mikosch; O. Wintenberger. Some variations on the extremal index. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 52-77. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a4/

[1] S. Asmussen, Applied Probability and Queues, 2nd edition, Springer, New York, 2003 | Zbl

[2] B. Basrak, J. Segers, “Regularly varying multivariate time series”, Stoch. Proc. Appl., 119 (2009), 1055–1080 | DOI | MR | Zbl

[3] B. Berghaus, A. Bücher, “Weak convergence of a pseudo maximum likelihood estimator for the extremal index”, Ann. Stat., 46 (2018), 2307–2335 | DOI | MR | Zbl

[4] B. M. Brown, S. I. Resnick, “Extreme values of independent stochastic processes”, J. Appl. Probab., 14 (1977), 732–739 | DOI | Zbl

[5] A. Bücher, T. Jennessen, “Method of moments estimators for the extremal index of a stationary time series”, Electr. J. Stat., 14 (2020), 3103–3156 | MR | Zbl

[6] D. Buraczewski, E. Damek, T. Mikosch, Stochastic Models with Power-Laws. The Equation $X=AX+B$, Springer, New York, 2016

[7] G. Buriticá, T. Mikosch, O. Wintenberger, Threshold selection for cluster inference based on large deviation principles, Technical report, 2021

[8] J. T. Chang, Y. Peres, “Ladder heights, Gaussian random walks and the Riemann zero function”, Ann. Probab., 25 (1997), 787–802 | DOI | MR | Zbl

[9] R. A. Davis, T. Hsing, “Point process and partial sum convergence for weakly dependent random variables with infinite variance”, Ann. Probab., 23 (1995), 879–917 | DOI | MR | Zbl

[10] R. A. Davis, S. I. Resnick, “Limit theory for moving averages of random variables with regularly varying tail probabilities”, Ann. Probab., 13 (1985), 179–195 | MR | Zbl

[11] A. C. Davison, R. L. Smith, “Models for exceedances over high thresholds (with discussion)”, J. Royal Statist. Soc., Ser. B, 52 (1990), 393–442 | MR | Zbl

[12] C. A. Ferro, J. Segers, “Inference for clusters of extreme values”, J. Royal Statist. Soc., Ser. B, 65 (2003), 545–556 | DOI | Zbl

[13] C. M. Goldie, “Implicit renewal theory and tails of solutions of random equations”, Ann. Appl. Probab., 1 (1991), 126–166 | DOI | MR | Zbl

[14] L. de Haan, C. Mercadier, C. Zhou, “Adapting extreme value statistics to financial time series: dealing with bias and serial dependence”, Finance and Stochastics, 20 (2016), 321–354 | DOI | MR | Zbl

[15] L. de Haan, “A spectral representation for max-stable processes”, Ann. Probab., 12 (1984), 1194–1204 | MR | Zbl

[16] L. de Haan, S. I. Resnick, H. Rootzén, C.G. de Vries, “Extremal behaviour of solutions to a stochastic difference equation with applications to ARCH processes”, Stoch. Proc. Appl., 32 (1989), 213–224 | DOI | Zbl

[17] T. Hsing, “Extremal index estimation for a weakly dependent stationary sequence”, Ann. Stat., 1993, 2043–2071 | Zbl

[18] Z. Kabluchko, “Spectral representations of sum- and max-stable processes”, Extremes, 12 (2009), 401–424 | DOI | MR | Zbl

[19] O. Kallenberg, Random Measures, Theory and Applications, Springer, Cham, 2017 | Zbl

[20] H. Kesten, “Random difference equations and renewal theory for products of random matrices”, Acta Math., 131 (1973), 207–248 | DOI | MR | Zbl

[21] R. Kulik, P. Soulier, Heavy-Tailed Time Series, Springer, New York, 2020 | Zbl

[22] M. R. Leadbetter, “Extremes and local dependence in stationary sequences”, Probab. Th. Relat. Fields, 65 (1983), 291–306 | Zbl

[23] M. R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer, Berlin, 1983 | Zbl

[24] R. M. Loynes, “Extreme values in uniformly mixing stationary stochastic processes”, Ann. Math. Statist., 36 (1965), 993–999 | DOI | MR | Zbl

[25] G. F. Newell, “Asymptotic extremes for $m$-dependent random variables”, Ann. Math. Statist., 35 (1964), 1322–1325 | DOI | MR | Zbl

[26] P. J. Northrop, “An efficient semiparametric maxima estimator of the extremal index”, Extremes, 18 (2015), 585–603 | DOI | MR | Zbl

[27] G. L. O'Brien, “Limit theorems for the maximum term of a stationary process”, Ann. Probab., 2 (1974), 540–545

[28] G. L. O'Brien, “Extreme values for stationary and Markov sequences”, Ann. Probab., 15 (1987), 281–291 | MR

[29] J. Pickands, “Asymptotic properties of the maximum in a stationary Gaussian process”, Trans. Amer. Math. Soc., 145 (1969), 75–86 | MR | Zbl

[30] S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, 1987 ; Springer, New York, 2008 | Zbl | Zbl

[31] S. I. Resnick, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Springer, New York, 2007 | Zbl

[32] C. Y. Robert, “Inference for the limiting cluster size distribution of extreme values”, Ann. Stat., 37 (2009), 271–310 | DOI | Zbl

[33] C. Y. Robert, C. A. Ferro, J. Segers, “A sliding blocks estimator for the extremal index”, Electr. J. Stat., 3 (2009), 993–1020 | Zbl

[34] J. Segers, “Approximate distributions of clusters of extremes”, Stat. Probab. Lett., 74 (2005), 330–336 | DOI | Zbl

[35] M. Süveges, “Likelihood estimation of the extremal index”, Extremes, 10 (2007), 41–55 | DOI | MR | Zbl

[36] M. Süveges, A. C. Davison, “Model misspecification in peaks over threshold analysis”, Ann. Appl. Stat., 4 (2010), 203–221 | DOI | MR | Zbl

[37] R. L. Smith, “Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone”, Statist. Sci., 4 (1989), 367–377 | MR

[38] R. L. Smith, I. Weissman, “Estimating the extremal index”, J. Royal Statist. Soc., Ser. B, 56 (1994), 515–528 | MR | Zbl