@article{ZNSL_2021_501_a4,
author = {G. Buritic\'a and N. Meyer and T. Mikosch and O. Wintenberger},
title = {Some variations on the extremal index},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {52--77},
year = {2021},
volume = {501},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a4/}
}
G. Buriticá; N. Meyer; T. Mikosch; O. Wintenberger. Some variations on the extremal index. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 52-77. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a4/
[1] S. Asmussen, Applied Probability and Queues, 2nd edition, Springer, New York, 2003 | Zbl
[2] B. Basrak, J. Segers, “Regularly varying multivariate time series”, Stoch. Proc. Appl., 119 (2009), 1055–1080 | DOI | MR | Zbl
[3] B. Berghaus, A. Bücher, “Weak convergence of a pseudo maximum likelihood estimator for the extremal index”, Ann. Stat., 46 (2018), 2307–2335 | DOI | MR | Zbl
[4] B. M. Brown, S. I. Resnick, “Extreme values of independent stochastic processes”, J. Appl. Probab., 14 (1977), 732–739 | DOI | Zbl
[5] A. Bücher, T. Jennessen, “Method of moments estimators for the extremal index of a stationary time series”, Electr. J. Stat., 14 (2020), 3103–3156 | MR | Zbl
[6] D. Buraczewski, E. Damek, T. Mikosch, Stochastic Models with Power-Laws. The Equation $X=AX+B$, Springer, New York, 2016
[7] G. Buriticá, T. Mikosch, O. Wintenberger, Threshold selection for cluster inference based on large deviation principles, Technical report, 2021
[8] J. T. Chang, Y. Peres, “Ladder heights, Gaussian random walks and the Riemann zero function”, Ann. Probab., 25 (1997), 787–802 | DOI | MR | Zbl
[9] R. A. Davis, T. Hsing, “Point process and partial sum convergence for weakly dependent random variables with infinite variance”, Ann. Probab., 23 (1995), 879–917 | DOI | MR | Zbl
[10] R. A. Davis, S. I. Resnick, “Limit theory for moving averages of random variables with regularly varying tail probabilities”, Ann. Probab., 13 (1985), 179–195 | MR | Zbl
[11] A. C. Davison, R. L. Smith, “Models for exceedances over high thresholds (with discussion)”, J. Royal Statist. Soc., Ser. B, 52 (1990), 393–442 | MR | Zbl
[12] C. A. Ferro, J. Segers, “Inference for clusters of extreme values”, J. Royal Statist. Soc., Ser. B, 65 (2003), 545–556 | DOI | Zbl
[13] C. M. Goldie, “Implicit renewal theory and tails of solutions of random equations”, Ann. Appl. Probab., 1 (1991), 126–166 | DOI | MR | Zbl
[14] L. de Haan, C. Mercadier, C. Zhou, “Adapting extreme value statistics to financial time series: dealing with bias and serial dependence”, Finance and Stochastics, 20 (2016), 321–354 | DOI | MR | Zbl
[15] L. de Haan, “A spectral representation for max-stable processes”, Ann. Probab., 12 (1984), 1194–1204 | MR | Zbl
[16] L. de Haan, S. I. Resnick, H. Rootzén, C.G. de Vries, “Extremal behaviour of solutions to a stochastic difference equation with applications to ARCH processes”, Stoch. Proc. Appl., 32 (1989), 213–224 | DOI | Zbl
[17] T. Hsing, “Extremal index estimation for a weakly dependent stationary sequence”, Ann. Stat., 1993, 2043–2071 | Zbl
[18] Z. Kabluchko, “Spectral representations of sum- and max-stable processes”, Extremes, 12 (2009), 401–424 | DOI | MR | Zbl
[19] O. Kallenberg, Random Measures, Theory and Applications, Springer, Cham, 2017 | Zbl
[20] H. Kesten, “Random difference equations and renewal theory for products of random matrices”, Acta Math., 131 (1973), 207–248 | DOI | MR | Zbl
[21] R. Kulik, P. Soulier, Heavy-Tailed Time Series, Springer, New York, 2020 | Zbl
[22] M. R. Leadbetter, “Extremes and local dependence in stationary sequences”, Probab. Th. Relat. Fields, 65 (1983), 291–306 | Zbl
[23] M. R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer, Berlin, 1983 | Zbl
[24] R. M. Loynes, “Extreme values in uniformly mixing stationary stochastic processes”, Ann. Math. Statist., 36 (1965), 993–999 | DOI | MR | Zbl
[25] G. F. Newell, “Asymptotic extremes for $m$-dependent random variables”, Ann. Math. Statist., 35 (1964), 1322–1325 | DOI | MR | Zbl
[26] P. J. Northrop, “An efficient semiparametric maxima estimator of the extremal index”, Extremes, 18 (2015), 585–603 | DOI | MR | Zbl
[27] G. L. O'Brien, “Limit theorems for the maximum term of a stationary process”, Ann. Probab., 2 (1974), 540–545
[28] G. L. O'Brien, “Extreme values for stationary and Markov sequences”, Ann. Probab., 15 (1987), 281–291 | MR
[29] J. Pickands, “Asymptotic properties of the maximum in a stationary Gaussian process”, Trans. Amer. Math. Soc., 145 (1969), 75–86 | MR | Zbl
[30] S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, 1987 ; Springer, New York, 2008 | Zbl | Zbl
[31] S. I. Resnick, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Springer, New York, 2007 | Zbl
[32] C. Y. Robert, “Inference for the limiting cluster size distribution of extreme values”, Ann. Stat., 37 (2009), 271–310 | DOI | Zbl
[33] C. Y. Robert, C. A. Ferro, J. Segers, “A sliding blocks estimator for the extremal index”, Electr. J. Stat., 3 (2009), 993–1020 | Zbl
[34] J. Segers, “Approximate distributions of clusters of extremes”, Stat. Probab. Lett., 74 (2005), 330–336 | DOI | Zbl
[35] M. Süveges, “Likelihood estimation of the extremal index”, Extremes, 10 (2007), 41–55 | DOI | MR | Zbl
[36] M. Süveges, A. C. Davison, “Model misspecification in peaks over threshold analysis”, Ann. Appl. Stat., 4 (2010), 203–221 | DOI | MR | Zbl
[37] R. L. Smith, “Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone”, Statist. Sci., 4 (1989), 367–377 | MR
[38] R. L. Smith, I. Weissman, “Estimating the extremal index”, J. Royal Statist. Soc., Ser. B, 56 (1994), 515–528 | MR | Zbl